Journal of Analytical Chemistry

, Volume 73, Issue 3, pp 257–265 | Cite as

Screening and Determination of Pesticides from Various Classes in Natural Water without Sample Preparation by Ultra HPLC–High-Resolution Quadrupole Time-of-Flight Mass Spectrometry

  • V. G. Amelin
  • D. S. Bol’shakov
  • A. M. Andoralov
Articles
  • 10 Downloads

Abstract

A rapid screening and determination of 59 pesticides from various classes in natural water without sample preparation by high-resolution ultra HPLC–quadrupole time-of-flight mass spectrometry is proposed. The matrix effect is considered on an example of waters with a high (mineral) and low (artesian) salt concentration. It is demonstrated that pesticides can be determined in water using the calibration curve method with an insignificant matrix effect (neonicotinoids, carbamates, and derivatives of uracil, pyridine, and benzoic and aryloxycarboxylic acids) and the standard addition method with a significant matrix effect (triazines, triazinones, triazoles, imidazoles, pyridazinones, organophosphorus compounds, and urea derivatives). The limits of detection were 0.01–10 ng/mL; the analytical ranges for pesticides were 0.04–50 (100) ng/mL. The relative standard deviation of the results does not exceed 15%; the analysis time is 10–15 min.

Keywords

ultra high-performance liquid chromatography high-resolution time-of-flight mass spectrometry analysis of natural waters pesticides from various classes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    GN (Hygienic Standard) 1.2.3111-13: Hygienic Standards for the Concentration of Pesticides in Environmental Objects (List) (As Amended on July 13, 2016), Moscow, 2016.Google Scholar
  2. 2.
    Amelin, V.G., Bol’shakov, D.S., and Tret’yakov, A.V., J. Anal. Chem., 2013, vol. 68, no. 5, p.386.CrossRefGoogle Scholar
  3. 3.
    Amelin, V.G. and Andoralov, A.M., J. Anal. Chem., 2016, vol. 71, no. 1, p.82.CrossRefGoogle Scholar
  4. 4.
    Amelin, V.G., Lavrukhin, D.K., and Tret’yakov, A.V., J. Anal. Chem., 2013, vol. 68, no. 10, p.912.CrossRefGoogle Scholar
  5. 5.
    Bol’shakov, D.S., Amelin, V.G., and Nikeshina, T.B., Analitika Kontrol’, 2015, vol. 19, no. 1, p.59.Google Scholar
  6. 6.
    Ying, G.G. and Kookana, R.S., J. Environ. Sci. Health, Part B, 2004, vol. 39, p.737.CrossRefGoogle Scholar
  7. 7.
    Amelin, V.G., Lavrukhin, D.K., and Tret’yakov, A.V., J. Anal. Chem., 2013, vol. 68, no. 9, p.822.CrossRefGoogle Scholar
  8. 8.
    Mezcua, M., Agüera, A., Lliberia, J.L., Cortés, M.A., Bagó, B., and Fernández-Alba, A.R., J. Chromatogr. A, 2006, vol. 1109, p.222.CrossRefGoogle Scholar
  9. 9.
    Amelin, V.G., Bol’shakov, D.S., and Tret’yakov, A.V., Voda: Khim. Ekol., 2012, no. 9, p.76.Google Scholar
  10. 10.
    Bol’shakov, D.S., Amelin, V.G., and Tret’yakov, A.V., J. Anal. Chem., 2014, vol. 69, no. 1, p.89.CrossRefGoogle Scholar
  11. 11.
    Amelin, V.G., Bol’shakov, D.S., and Andoralov, A.M., J. Anal. Chem., 2017, vol. 72, no. 2, p.178.CrossRefGoogle Scholar
  12. 12.
    Ferrer, C., Lozano, A., Agüera, A., Girón, A.J., and Fernández-Alba, A.R., J. Chromatogr. A, 2011, vol. 1218, p. 7634.CrossRefGoogle Scholar
  13. 13.
    Amelin, V.G., Andoralov, A.M., Volkova, N.M., Korotkov, A.I., Nikeshina, T.B., Sidorov, I.I., and Timofeev, A.A., Analitika Kontrol’, 2015, vol. 19, no. 2, p.189.Google Scholar
  14. 14.
    Amelin, V., Korotkov, A., and Andoralov, A., J. AOAC Int., 2016, vol. 99, no. 6, p. 1600.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. G. Amelin
    • 1
    • 2
  • D. S. Bol’shakov
    • 1
  • A. M. Andoralov
    • 2
    • 3
  1. 1.Federal Centre for Animal Health, Yur’evetsVladimirRussia
  2. 2.Vladimir State UniversityVladimirRussia
  3. 3.Bryansk Interregional Veterinary LaboratorySuponevoRussia

Personalised recommendations