Advertisement

Electrokinetic Potential and Size Distribution of Magnetite Nanoparticles Stabilized by Poly(vinyl Pyrrolidone)

Abstract

The impact of different amounts of poly(vinyl pyrrolidone) (PVP) on the electrokinetic (ζ) potential and size distribution of magnetite particles, produced by co-precipitation method, in a wide pH interval (2–12) is studied. It has been shown that magnetite particles possess relatively high positive and negative ζpotentials (up to 40 mV) above and below the isoelectric point (IEP), respectively. The IEP of the sample corresponds to pH 6.6 which is shifted to pH 9.1 in 10–2 M KCl solution. Addition of PVP shifts the IEP of the surface to higher pH values and substantially reduces the absolute value of the ζ-potential of both positively (in acidic media) and negatively (alkali media) charged particles as a result of formation of thick polymer layers on the surface. Adsorption of PVP gives a marked rise to the hydrodynamic diameter of magnetite particles but does not change the (monomodal) mode of their size distribution. Also it is shown that PVP can serve as an efficient stabilizer of magnetite particles in a broad pH interval. At the same time in the presence of high amounts (1–2 g PVP/g magnetite) of the polymer, and high pH values (10–11) the partial aggregation of particles takes place.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    Koo, K.N., Ismail, A.F., Othman, M.H.D., Bidin, N., and Rahman, M.A., Malaysian J.Fundam. Appl. Sci., 2019, vol. 15, p. 23.

  2. 2

    Evans, B.A., Ronecker, J.C., Han, D.T., Glass, D.R., Train, T.L., and Deatsch, A.E., Mater. Sci. Eng. C, 2016, vol. 62, p. 860.

  3. 3

    Gupta, A.K. and Gupta, M., Biomaterials, 2005, vol. 26, p. 3995.

  4. 4

    Li, Z., Kawashita, M., Araki, N., Mitsumori, M., Hiraoka, M., and Doi, M., Mater. Sci. Eng. C, 2010, vol. 30, no. 7, p. 990.

  5. 5

    Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Van der Elst, L., and Muller, R.N., Chem. Rev., 2008, vol. 108, p. 2064.

  6. 6

    Xie, S., Zhang, B., Wang, L., Wang, J., Li, X., Yang, G., and Gao, F., Appl. Surf. Sci., 2015, vol. 326, p. 32.

  7. 7

    Sood, A., Arora, V., Shah, J., Kotnala, R.K., and Jain, T.K., J. Exp. Nanosci., 2016, vol. 11, p. 370.

  8. 8

    Mortimer, C.J. and Wright, C.J., Biotechnol. J., 2017, vol. 12, p. 1 600 693.

  9. 9

    Fan, Y., Lei, C., Chen, Z., Ma, F., and Chen, H., Surf. Coat. Technol., 2012, vol. 213, p. 8.

  10. 10

    Mirabello, G., Lenders, J.J., and Sommerdijk, N.A., Chem. Soc. Rev., 2016, vol. 45, p. 5085.

  11. 11

    Dubey, V. and Kain, V., Mater. Manuf. Process., 2018, vol. 33, p. 835.

  12. 12

    Yazdani, F. and Edrissi, M., Mater. Sci. Eng. B, 2010, vol. 171, p. 86.

  13. 13

    Rajput, S. Pittman, Jr., C.U., and Mohan, D., J. Colloid Interface Sci., 2016, vol. 468, p. 334.

  14. 14

    Lei, M., Hu, D., Yang, H., and Lei, Z., Surf. Coat. Technol., 2015, vol. 271, p. 2.

  15. 15

    Barany, S. and Dekany, I., in Nanoscience: Colloidal and Interfacial Aspects, Starov, V.M., Ed., Boca Raton, FL: CRC, 2010, p. 1017.

  16. 16

    Illés, E., Szekeres, M., Kupcsik, E., Tóth, I., Farkas, K., Jedlovszky-Hajdú, A., and Tombácz, E., Colloids Surf. A, 2014, vol. 460, p. 429.

  17. 17

    Wu, W., He, Q., and Jiang, C., Nanoscale Res. Lett., 2008, vol. 3, p. 397.

  18. 18

    Tu, Z., Zhang, B., Yang, G., Wang, M., Zhao, F., Sheng, D., and Wang, J., Colloids Surf. A, 2013, vol. 436, p. 854.

  19. 19

    Zhang, B., Tu, Z., Zhao, F., and Wang, J., Appl. Surf. Sci., 2013, vol. 266, p. 375.

  20. 20

    Cole, A.J., David, A.E., Wang, J., Galbán, C.J., Hill, H.L., and Yang, V.C., Biomaterials, 2011, vol. 32, p. 2183.

  21. 21

    Hu, J., Obayemi, J.D., Malatesta, K., Košmrlj, A., and Soboyejo, W.O., Mater. Sci. Eng. C, 2018, vol. 88, p. 32.

  22. 22

    Cheng, K.W. and Hsu, S.H., Int. J. Nanomed., 2017, vol. 12, p. 1775.

  23. 23

    Cendrowski, K., Sikora, P., Zielinska, B., Horszczaruk, E., and Mijowska, E., Appl. Surf. Sci., 2017, vol. 407, p. 391.

  24. 24

    Szalai, J.A., Manivannan, N., and Kaptay, G., Colloids Surf. A, 2019, vol. 568, p. 113.

  25. 25

    Huang, H.H., Ni, X.O., Long, L., Chew, C.H., Tan, K.L., Loh, F.C., Deng, J.F., and Xu, G.Q., Langmuir, 1996, vol. 12, p. 909.

  26. 26

    Patakfalvi, R., Viranyi, Z., and Dekany, I., Colloid Polym. Sci., 2004, vol. 283, p. 299.

  27. 27

    Papp, S. and Dekany, I., Colloid Polym. Sci., 2006, vol. 284, p. 1049.

  28. 28

    Zhang, J.Z., Chen, X.Y., Wang, B.N., and Shi, C.W., J. Cryst. Growth, 2008, vol. 310, p. 5453.

  29. 29

    Arsalani, N., Fattahi, H., and Nauzarpoor, M., Express Polym. Lett., 2010, vol. 4, p. 329.

  30. 30

    Lu, X., Niu, M., Qiao, R., and Gao, M., J. Phys. Chem. B, 2008, vol. 112, p. 14 390.

  31. 31

    Khamis, E.A., Rania, A.H., and Mors, E., Egypt.J. Pet., 2018, vol. 27, p. 919.

  32. 32

    Pandey, G., Singh, S., and Hitkari, G., Int. Nano Lett., 2018, vol. 8, p. 111.

  33. 33

    Pasichnyk, M., Kucher, E., and Hyrlya, L., East.-Eur. J. Enterp. Technol., 2018, vol. 3, no. 6, p. 1729.

  34. 34

    Platonov, B.E., Baran, A.A., and Polischuk, T.A., Adsorptsiya i adsorbenty (Adsorption and Adsorbents), Strazhesko D.N., Ed., 1980, vol. 8, p. 88.

  35. 35

    Baran, A.A., Polymer-Containing Disperse Systems, Kiev: Naukova Dumka, 1986.

  36. 36

    Baran, A.A. and Mitina, N.S., Ukr. Chem. J., 1990, vol. 56, p. 578.

  37. 37

    Csempesz, F. and Rohrsetzer, S., Colloids Surf., 1984, vol. 11, p. 103.

  38. 38

    Csempesz, F. and Rohrsetzer, S., Colloids Surf., 1987, vol. 24, p. 101.

  39. 39

    Puskas, I. and Csempesz, F., Colloids Surf. B, 2007, vol. 58 p, p. 218.

Download references

Author information

Correspondence to Sandor Barany.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adrienn J. Szalai, Kaptay, G. & Barany, S. Electrokinetic Potential and Size Distribution of Magnetite Nanoparticles Stabilized by Poly(vinyl Pyrrolidone). Colloid J 81, 773–778 (2019). https://doi.org/10.1134/S1061933X20010020

Download citation