Advertisement

Colloid Journal

, Volume 81, Issue 6, pp 733–740 | Cite as

Plasmonic Enhancement of Dye Fluorescence in Polymer/Metal Nanocomposites

  • T. B. Roumyantseva
  • O. V. Dement’evaEmail author
  • I. E. Protsenko
  • A. V. Zaitseva
  • V. M. Sukhov
  • V. M. Rudoy
Article

Abstract

The effect of the plasmonic enhancement of dye fluorescence in poly(vinyl butyral) films containing Ag/SiO2 core-shell nanoparticles has been thoroughly studied. It has been shown that the magnitude of this effect can be quite large (up to 5 times) even for a dye having a very high quantum yield (coumarin 7). Therewith, it substantially depends on the size and concentration of Ag/SiO2 particles and the quantum yield of a dye. The results obtained are discussed with involvement of mechanisms reported in the literature for plasmonic enhancement of fluorescence of dyes characterized by high and low quantum yields.

Notes

ACKNOWLEDGMENTS

We are grateful to Prof. V.A. Kuz’min (Emanuel Institute of Biochemical Physics, Russian Academy of Sciences) for supplying the sample of eosin B.

FUNDING

This work was performed according to an order of the Ministry of Science and Higher Education of the Russian Federation.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    Surface Plasmon Enhanced Coupled and Controlled Fluorescence, Geddes, C.D., Ed., Hoboken: Wiley, 2017.Google Scholar
  2. 2.
    Anger, P., Bharadwaj, P., and Novotny, L., Phys. Rev. Lett., 2006, vol. 96, p. 113002.CrossRefGoogle Scholar
  3. 3.
    Ming, T., Chen, H., Jiang, R., Li, Q., and Wang, J., J. Phys. Chem. Lett., 2012, vol. 3, p. 191.CrossRefGoogle Scholar
  4. 4.
    Guzatov, D.V., Vaschenko, S.V., Stankevich, V.V., Lunevich, A.Ya., Glukhov, Y.F., and Gaponenko, S.V., J. Phys. Chem. C, 2012, vol. 116, p. 10723.CrossRefGoogle Scholar
  5. 5.
    Deng, W., Xie, F., Baltar, H.T.M.C.M., and Goldys, E.M., Phys. Chem. Chem. Phys., 2013, vol. 15, p. 15695.CrossRefGoogle Scholar
  6. 6.
    Li, J.-F., Li, C.-Y., and Aroca, R.F., Chem. Soc. Rev., 2017, vol. 46, p. 3962.CrossRefGoogle Scholar
  7. 7.
    Jeong, Y., Kook, Y.-M., Lee, K., and Koh, W.-G., Biosens. Bioelectron., 2018, vol. 111, p. 102.CrossRefGoogle Scholar
  8. 8.
    Gartia, M.R., Eichorst, J.P., Clegg, R.M., and Liu, G.L., Appl. Phys. Lett., 2012, vol. 101, p. 023118.CrossRefGoogle Scholar
  9. 9.
    Austin, L.A., Kang, B., and El-Sayed, M.A., Nano Today, 2015, vol. 10, p. 542.CrossRefGoogle Scholar
  10. 10.
    Le, K.Q., Plasmonics, 2015, vol. 10, p. 475.CrossRefGoogle Scholar
  11. 11.
    Abadeer, N.S., Brennan, M.R., Wilson, W.L., and Murphy, C.J., ACS Nano, 2014, vol. 8, p. 8392.CrossRefGoogle Scholar
  12. 12.
    Kim, J., Dantelle, G., Revaux, A., Bérard, M., Huignard, A., Gacoin, T., and Boilot, J.-P., Langmuir, 2010, vol. 26, p. 8842.CrossRefGoogle Scholar
  13. 13.
    Bardhan, R., Grady, N.K., and Halas, N.J., Small, 2008, vol. 4, p. 1716.CrossRefGoogle Scholar
  14. 14.
    Gill, R. and Le Ru, E.C., Phys. Chem. Chem. Phys., 2011, vol. 13, p. 16366.CrossRefGoogle Scholar
  15. 15.
    Mohan, H., Master Degree Thesis (Univ. of Windsor, Ontario, Canada, 2012).Google Scholar
  16. 16.
    Cui, Q., He, F., Li, L., and Möhwald, H., Adv. Colloid Interface Sci., 2014, vol. 207, p. 164.CrossRefGoogle Scholar
  17. 17.
    Meng, X., Kildishev, A.V., Fujita, K., Tanaka, K., and Shalaev, V.M., Nano Lett., 2013, vol. 13, p. 4106.CrossRefGoogle Scholar
  18. 18.
    Ning, S., Zhang, N., Dong, H., Hou, X., Zhang, F., and Wu, Z., Opt. Mater. Express, 2018, vol. 8, p. 3014.CrossRefGoogle Scholar
  19. 19.
    Silvert, P.-Y., Herrera-Urbina, R., and Tekaia-Elhsissen, K., J. Mater. Chem., 1997, vol. 7, p. 293.CrossRefGoogle Scholar
  20. 20.
    Bastús, N.G., Merkoci, F., Piella, J., and Puntes, V., Chem. Mater., 2014, vol. 26, p. 2836.CrossRefGoogle Scholar
  21. 21.
    Bai, Z., Chen, R., Si, P., Huang, Y., Sun, H., and Kim, D.-H., ACS Appl. Mater. Interfaces, 2013, vol. 5, p. 5856.CrossRefGoogle Scholar
  22. 22.
    Taniguchi, M. and Lindsey, J.S., Photochem. Photobiol., 2018, vol. 94, p. 290.CrossRefGoogle Scholar
  23. 23.
    Fita, P., Fedoseeva, M., and Vauthey, E., J. Phys. Chem. A, 2011, vol. 115, p. 2465.CrossRefGoogle Scholar
  24. 24.
    Lakowicz, J.R., Principles of Fluorescence Spectroscopy, New York: Springer Science + Business Media, 2006.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • T. B. Roumyantseva
    • 1
  • O. V. Dement’eva
    • 1
    Email author
  • I. E. Protsenko
    • 2
  • A. V. Zaitseva
    • 1
  • V. M. Sukhov
    • 1
  • V. M. Rudoy
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations