Advertisement

Thermodynamic Properties of Water−Ethanol Films Formed between Hydrophobic Surfaces. Part I.

  • 18 Accesses

Abstract

Based on thermodynamic reasoning we claim that long-ranged, solvophobic surface forces may arise in thin films of associated liquids due to formation of linear aggregates composed of spheroidal, nano-sized molecular clusters. Supposedly, these aggregates can span a narrow gap between two hydrofobic solid surfaces submerged in the film-forming liquid phase, thus giving rise to attraction. Such aggregates are apparantly generated in thin water and water–ethanol films, especially below room temperature and for high mole fractions of water or ethanol, respectively. The surface force recorded for a pure water with film thickness larger than about 20 nm are found to be proportional to the number of bridging cluster aggregates per unit area that cross the mid-plane of a thin film. Moreover, the long-range-ness (decay length) was seen to depend inversely on the work of formation of the elongated middle part of a bridging cluster aggregate. Furthermore, addition of small amounts of ethanol rapidly reduce the surface force generated for pure water films with thickness of a few hundred nm.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    Eriksson, J.C., Ljunggren, S., and Claesson, P.M., J. Chem. Soc., Faraday Trans. 2, 1989, vol. 85, p. 163.

  2. 2

    Wang, J.L., Yoon, R.H., and Eriksson, J.C., J. Colloid Interface Sci., 2011, vol. 364, p. 257.

  3. 3

    Considine, R.F. and Drummond, C.J., Langmuir, 2000, vol. 16, p. 631.

  4. 4

    Parker, J.L. and Claesson, P.M., Langmuir, 1992, vol. 8, p. 757.

  5. 5

    Wang, J.L., Li, Z.L., Yoon, R.H., and Eriksson, J.C., J. Colloid Interface Sci., 2012, vol. 379, p. 114.

  6. 6

    Li, Z. and Yoon, R.-H., Langmuir, 2014, vol. 30, p. 13312.

  7. 7

    Israelachvili, J. and Pashley, R., Nature (London), 1982, vol. 300, p. 341.

  8. 8

    Hammer, M.U., Anderson, T.H., Chaimovich, A., Shell, M.S., and Israelachvili, J., Faraday Discuss., 2010, vol. 146, p. 299.

  9. 9

    Meyer, E.E., Rosenberg, K.J., and Israelachvili, J., Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, p. 15739.

  10. 10

    Christenson, H.K. and Claesson, P.M., Adv. Colloid Interface Sci., 2001, vol. 91, p. 391.

  11. 11

    Eriksson, J.C. and Yoon, R.-H., in Froth Flotation: A Century of Innovation, Fuerstenau M.C., Jameson G.J., and Yoon, R.-H., Eds., Society for Mining, Metallurgy and Exploration (SME), 2007, p. 133.

  12. 12

    Eriksson, J.C. and Yoon, R.-H., in Colloid Stability: The Role of Surface Forces, Part I, Tadros, T.F., Ed., 2007, vol. 1, p. 99.

  13. 13

    Boinovich, L. and Emelyanenko, A., in Colloid Stability: The Role of Surface Forces, Part I, Tadros, T.F., Ed., 2007, vol. 1, p. 133.

  14. 14

    Attard, P., Adv. Colloid Interface Sci., 2003, vol. 104, p. 75.

  15. 15

    Kralchevsky, P.A., Langmuir, 1996, vol. 12, p. 5951.

  16. 16

    Ryan, W.L. and Hemmingsen, E.A., J. Colloid Interface Sci., 1993, vol. 15, p. 312.

  17. 17

    Peng, H., Birkett, G.R., and Nguyen, A.V., Adv. Colloid Interface Sci., 2015, vol. 222, p. 573.

  18. 18

    Zhenbo, X., PhD Thesis (Virginia Inst. of Technology, USA, 2015).

  19. 19

    Eriksson, J.C., Surf. Sci., 1969, vol. 14, p. 221.

  20. 20

    Derjaguin, B., Kolloid-Z., 1934, vol. 69, p. 155.

  21. 21

    Derjaguin, B.V., and Churaev, N.V., Colloids Surf., 1989, vol. 41, p. 223.

  22. 22

    Israelachvili, J., Acc. Chem. Res., 1987, vol. 20, p. 415.

  23. 23

    Chen, H., Gan, W., Wu, B.-H., Wu, D., Guo, Y., and Wang, H.-F., J. Phys. Chem. B, 2005, vol. 109, p. 8053.

  24. 24

    Marcelja, S. and Radic, N., Chem. Phys. Lett., 1976, vol. 42, p. 129.

  25. 25

    Evans, R., Lectures at 3rd Warsaw School of Statistical Physics, Kazimierz Polny, 2009, p. 21.

  26. 26

    Besseling, N.A.M., Langmuir, 1997, vol. 13, p. 2113.

  27. 27

    Teschke, O. and De Souza, E., Phys. Chem. Chem. Phys., 2005, vol. 7, p. 3856.

  28. 28

    Wernet, P., Nordlund, D., Bergmann, U., Cavalleri, M., Odelius, M., Ogasawara, H., Näslund, L.A., Hirsch, T.K., Ojamäe, L., Glatzel, P., Pettersson, L.G.M., and Nilsson, A., Science (Washington, D. C.), 2004, vol. 304, p. 995.

  29. 29

    Huang, C., Wikfeldt, K.T., Tokushima, T., Nordlund, D., Harada, Y., Bergmann, U., Niebuhr, M., Weiss, T.M., Horikawa, Y., Leetma, M., Ljungberg, M.P., Takahashi, O., Lenz, A., Ojamäe, L., Lyubartsev, A.P., Shin, S., Pettersson, L.G.M., and Nilsson, A., Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, p. 15214.

  30. 30

    Eriksson, J.C. and Henriksson, U., Langmuir, 2007, vol. 23, p. 10026.

  31. 31

    Eriksson, J.C. and Henriksson, U., Langmuir, 2013, vol. 29, p. 4789.

  32. 32

    Miklavic, S.J., Chan, D.Y.C., White, L.R., and Healy, T.W., J. Phys. Chem., 1994, vol. 98, p. 9022.

  33. 33

    Aratono, M., Toyomasu, T., Villeneuve, M., Uchiso-no, Y., Takiue, T., Motomura, K., and Ikeda, N., J. Colloid Interface Sci., 1997, vol. 191, p. 146.

  34. 34

    Nishi, N., Takahashi, S., Matsumoto, M., Tanaka, A., Muraya, K., Takamuku, T., and Yamaguchi, T., J. Phys. Chem., 1995, vol. 99, p. 462.

  35. 35

    Hogg, R., Healy, T.W., and Fuerstenau, D.W., Trans. Faraday Soc., 1996, vol. 62, p. 1638.

  36. 36

    Dalmolin, I., Skovroinski, E., Biasi, A., Corazza, M.L., Dariva, C., and Olivira, J.V., Fluid Phase Equilib., 2006, vol. 245, p. 193.

  37. 37

    Ludwig, R., Angew. Chem., Int. Ed. Engl., 2001, vol. 40, p. 1808.

  38. 38

    Chaplin, M.F., Biophys. Chem., 1999, vol. 83, p. 211.

  39. 39

    Hill, T.L., Thermodynamics of Small Systems, Part II, New York: W.A. Benjamin, 1964, p. 77.

  40. 40

    Eriksson, J.C. and Ljunggren, S., J. Chem. Soc., Faraday Trans., 1985, vol. 81, p. 1209.

  41. 41

    Kappl, M. and Butt, H.J., Part. Part. Syst. Charact., 2002, vol. 19, p. 129.

  42. 42

    Raiteri, R., Preuss, M., Grattarola, M., and Butt, H.J., Colloids Surf. A, 1998, vol. 136, p. 191.

  43. 43

    Pan, L., Jung, S., and Yoon, R.H., J. Colloid Interface Sci., 2011, vol. 361, p. 321.

  44. 44

    Li, Z. and Yoon, R.-H., Miner. Eng., 2012, vols. 36–38, p. 126.

  45. 45

    Pashley, R.M., J. Phys. Chem. B, 2003, vol. 107, p. 1714.

  46. 46

    Meyer, E.E., Lin, O., and Israelachvili, J.N., Langmuir, 2005, vol. 21, p. 256.

  47. 47

    Shchukarev, S.A. and Tolmacheva, T.A., Translated from Zh.Strukt. Khim., 1968, vol. 9, p. 21.

Download references

ACKNOWLEDGEMENTS

The authors wishes to gratefully thank Prof. Ulf Henriksson , KTH, Stockholm, Sweden, for perusing an early version of this paper, and Prof. Anatoly I. Rusanov, Saint Petersburg, for valuable advice concerning some theoretical matters.

Author information

Correspondence to Jan Christer Eriksson.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jan Christer Eriksson, Zhenbo, X. & Yoon, R. Thermodynamic Properties of Water−Ethanol Films Formed between Hydrophobic Surfaces. Part I.. Colloid J 81, 650–661 (2019). https://doi.org/10.1134/S1061933X1906005X

Download citation