Colloid Journal

, Volume 81, Issue 3, pp 272–276 | Cite as

Stabilization of Silver Nanoparticles in Water with a Cationic Copolymer Based on Poly(Aminoethyl Methacrylate)

  • A. S. Senchukova
  • M. E. Mikhailova
  • A. A. Lezov
  • E. V. Lebedeva
  • A. N. Podseval’nikova
  • N. V. TsvetkovEmail author


It has been shown that a cationic copolymer based on poly(aminoethyl methacrylate) is capable of stabilizing silver nanoparticle dispersions in aqueous media. Nanoparticles have been prepared via chemical reduction of AgNO3 in an aqueous solution with sodium borohydride in the presence of a cationic random terpolymer—poly(2-aminoethyl methacrylate-co-N-methyl-2-aminoethyl methacrylate-co-N,N-dimethyl-2-aminoethyl methacrylate). Spectrophotometry has been employed to show that silver dispersions formed in the presence of the copolymer are stable for a long time (more than half a year). Using dynamic light scattering and scanning electron microscopy, consistent information has been obtained on the sizes and size distribution of the stabilized nanoparticles.



This work was supported by the Russian Science Foundation, project no.16-13-10 148.

We are grateful to Prof. Ulrich S. Schubert and Anne-K. Trützschler (Jena Center for Soft Matter, Friedrich Schiller University Jena, Jena, Germany) for supplying the sample of the cationic copolymer.


  1. 1.
    Chen, G., Zhao, Y., Fu, G., Duchesne, P.N., Gu, L., Zheng, Y., Weng, X., Chen, M., Zhang, P., Pao, C.-W., Lee, J.-F., and Zheng, N., Science (Washington, D. C.), 2014, vol. 344, p. 495.CrossRefGoogle Scholar
  2. 2.
    Reeßing, F. and Szymanski, W., Curr. Opin. Biotechnol., 2019, vol. 58, p. 9.CrossRefGoogle Scholar
  3. 3.
    Huanca, D.R. and Salcedo, W.J., J. Alloys Compd., 2019, vol. 777, p. 554.CrossRefGoogle Scholar
  4. 4.
    Wu, B. and Zheng, N., Nano Today, 2013, vol. 8, p. 168.CrossRefGoogle Scholar
  5. 5.
    Qin, L., Zeng, G., Lai, C., Huang, D., Xu, P., Zhang, C., Cheng, M., Liu, X., Liu, S., Li, B., and Yi, H., Coord. Chem. Rev., 2018, vol. 359, p. 1.CrossRefGoogle Scholar
  6. 6.
    Khampieng, T., Wongkittithavorn, S., Chaiarwut, S., Ekabutr, P., Pavasant, P., and Supaphol, P., J. Drug Deliv. Sci. Technol., 2018, vol. 44, p. 91.CrossRefGoogle Scholar
  7. 7.
    Han, X., Han, M., Ma, L., Qu, F., Kong, R.-M., and Qu, F., Talanta, 2019, vol. 194, p. 55.CrossRefGoogle Scholar
  8. 8.
    Yin, J., Wei, B., Li, Y., Li, Y., and Xi, P., J. Energy Chem., 2019, vol. 34, p. 1.CrossRefGoogle Scholar
  9. 9.
    White, R.J., Luque, R., Budarin, V.L., Clark, J.H., and Macquarrie, D.J., Chem. Soc. Rev., 2009, vol. 38, p. 481.CrossRefGoogle Scholar
  10. 10.
    Kaviya, S., Santhanalakshmi, J., and Viswanathan, B., J. Nanotechnol., 2011, 152970.Google Scholar
  11. 11.
    Xie, Y., Chen, T., Guo, Y., Cheng, Y., Qian, H., and Yao, W., Food Chem., 2019, vol. 270, p. 173.CrossRefGoogle Scholar
  12. 12.
    El-Faham, A., Atta, A.M., Osman, S.M., Ezzat, A.O., El-Saeed, A.M., Al Othman, Z.A., and Al-Lohedan, H.A., Prog. Org. Coat., 2018, vol. 123, p. 209.CrossRefGoogle Scholar
  13. 13.
    Klein, D.L., McEuen, P.L., Katari, J.E.B., Roth, R., and Alivisatos, A.P., Appl. Phys. Lett., 1996, vol. 68, p. 2574.CrossRefGoogle Scholar
  14. 14.
    Murinzi, T.W., Clement, T.A., Chitsa, V., and Mehlana, G., J. Solid State Chem., 2018, vol. 268, p. 198.CrossRefGoogle Scholar
  15. 15.
    Zhang, T., Chen, Y., Huang, W., Wang, Y., and Hu, X., Sens. Actuators B, 2018, vol. 276, p. 362.CrossRefGoogle Scholar
  16. 16.
    Patil, M.P. and Kim, G.-D., Colloids Surf. B, 2018, vol. 172, p. 487.CrossRefGoogle Scholar
  17. 17.
    Baruwati, B., Polshettiwar, V., and Varma, R.S., Green Chem., 2009, vol. 11, p. 926.CrossRefGoogle Scholar
  18. 18.
    Bilal, M., Rasheed, T., Iqbal, H.M.N., Hu, H., Wang, W., and Zhang, X., Int. J. Biol. Macromol., 2017, vol. 103, p. 554.CrossRefGoogle Scholar
  19. 19.
    Samal, S.K., Dash, M., Van Vlierberghe, S., Kaplan, D.L., Chiellini, E., Van Blitterswijk, C., Moroni, L., and Dubruel, P., Chem. Soc. Rev., 2012, vol. 41, p. 7147.CrossRefGoogle Scholar
  20. 20.
    Chen, Y., Zhu, Q., Cui, X., Tang, W., Yang, H., Yuan, Y., and Hu, A., Chem.-Eur. J., 2014, vol. 20, p. 12477.CrossRefGoogle Scholar
  21. 21.
    Kenawy, E.-R., Worley, S.D., and Broughton, R., Biomacromolecules, 2007, vol. 8, p. 1359.CrossRefGoogle Scholar
  22. 22.
    Ramamoorth, M. and Narvekar, A., J. Clin. Diagn. Res., 2015, vol. 9, no. 1, p. GE01.Google Scholar
  23. 23.
    Kabanov, A.V., Astafyeva, I.V., Chikindas, M.L., Rosenblat, G.F., Kiselev, V.I., Severin, E.S., and Kabanov, V.A., Biopolymers, 1991, vol. 31, p. 1437.CrossRefGoogle Scholar
  24. 24.
    Shi, B., Zheng, M., Tao, W., Chung, R., Jin, D., Ghaffari, D., and Farokhzad, O.C., Biomacromolecules, 2017, vol. 18, p. 2231.CrossRefGoogle Scholar
  25. 25.
    De Cock, L.J., De Koker, S., De Geest, B.G., Grooten, J., Vervaet, C., Remon, J.P., Sukhorukov, G.B., and Antipina, M.N., Angew. Chem., Int. Ed. Engl., 2010, vol. 49, p. 6954.CrossRefGoogle Scholar
  26. 26.
    Hemp, S.T., Smith, A.E., Bryson, J.M., Allen, M.H., and Long, T.E., Biomacromolecules, 2012, vol. 13, p. 2439.CrossRefGoogle Scholar
  27. 27.
    Ahmed, M. and Narain, R., Prog. Polym. Sci., 2013, vol. 38, p. 767.CrossRefGoogle Scholar
  28. 28.
    Lokitz, B.S., Lowe, A.B., and McCormick, C.L., ACS Symp. Ser., 2006, vol. 937, p. 95.CrossRefGoogle Scholar
  29. 29.
    Perevyazko, I., Trutzschler, A., Gubarev, A., Lebedeva, E., Traeger, A., Tsvetkov, N., and Schubert, U.S., Eur. Polym. J., 2017, vol. 97, p. 347.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. S. Senchukova
    • 1
  • M. E. Mikhailova
    • 1
  • A. A. Lezov
    • 1
  • E. V. Lebedeva
    • 1
  • A. N. Podseval’nikova
    • 1
  • N. V. Tsvetkov
    • 1
    Email author
  1. 1.Department of Molecular Biophysics and Polymer Physics, St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations