Advertisement

Colloid Journal

, Volume 81, Issue 3, pp 253–260 | Cite as

Co-hydrogelation of Dendritic Surfactant and Amino Acids in Their Common Naturally-occurring Forms: A Study of Morphology and Mechanisms

  • Ning Li
  • Mehran Asad Ayoubi
  • Huamei ChenEmail author
  • Jide Wang
  • Wei WangEmail author
Article
  • 23 Downloads

Abstract

Sixteen different amino acids (AAs) presenting different side-chains as neutral nonpolar (Gly, Ala, Val, Leu, Ile, and Phe), neutral polar (Ser, Thr, Cys, Asn and Gln), acidic (Asp and Glu) and basic (Lys, Arg and His) could induce co-hydrogelation in 1% solutions of the dendritic surfactant, 3,3′-(octadecylazanediyl) dipropionic acid, at various concentration (1.6% ≤ Cco-hgel ≤ 20%). The amino acids Asp and Glu showed a strong favourable intercation with the surfactant, and, together with Leu and Gln, were identified as low-molecular-weight co-hydrogelators (Cco-hgel < 2%). Interpretation of XRD data indicated that all of the hydrogels exhibited lamellar structures with an occasional presence of AA crystallites. By using scanning electron microscopy, we found that the morphology of hydrogels comprises various particles (cloddy, platy, lath-/needle-like and amyloid-like fibrillar ones) and 3D structures (sheet-like and tubular ones). Furthermore, two mechanisms were identified for AA co-hydrogelation: (1) the interpenetration of AA crystallites and AA/surfactant lamellae, and (2) the formation of 3D solvent-trapping, mostly percolating structures.

Notes

Supplementary material

10595_2019_8055_MOESM1_ESM.pdf (4.4 mb)
10595_2019_8055_MOESM1_ESM.pdf

REFERENCES

  1. 1.
    Raeburn, J., Cardoso, A.Z., and Adams, D.J., Chem. Soc. Rev., 2013, vol. 42, p. 5143.CrossRefGoogle Scholar
  2. 2.
    Raeburn, J. and Adams, D.J., Chem. Commun., 2015, vol. 51, p. 5170.CrossRefGoogle Scholar
  3. 3.
    Sangeetha, N.M. and Maitra, U., Chem. Soc. Rev., 2005, vol. 34, p. 821.CrossRefGoogle Scholar
  4. 4.
    Van Esch, J.H., Langmuir, 2009, vol. 25, p. 8392.CrossRefGoogle Scholar
  5. 5.
    Tanaka, A., Fukuoka, Y., Morimoto, Y., Honjo, T., Koda, D., Goto, M., and Maruyama, T., J. Am. Chem. Soc., 2015, vol. 137, p. 770.CrossRefGoogle Scholar
  6. 6.
    Boekhoven, J., Brizard, A.M., Kowlgi, K.N., Koper, G.J., Eelkema, R., and Van Esch, J.H., Angew. Chem., Int. Ed. Engl., 2010, vol. 49, p. 4825.CrossRefGoogle Scholar
  7. 7.
    Smith, D.K., Nat. Chem., 2010, vol. 2, p. 162.CrossRefGoogle Scholar
  8. 8.
    Lee, J.H., Park, J., Park, J.W., Ahn, H.J., Jaworski, J., and Jung, J.H., Nat. Commun., 2015, vol. 6, p. 6650.CrossRefGoogle Scholar
  9. 9.
    Xie, H., Wang, J., and Wang, W., Chemistry Select, 2017, vol. 2, p. 9330.Google Scholar
  10. 10.
    Wang, A., Shi, W., Huang, J., and Yan, Y., Soft Matter, 2016, vol. 12, p. 337.CrossRefGoogle Scholar
  11. 11.
    Dastidar, P., Chem. Soc. Rev., 2008, vol. 37, p. 2699.CrossRefGoogle Scholar
  12. 12.
    Zhou, S.L., Matsumoto, S., Tian, H.D., Yamane, H., Ojida, A., Kiyonaka, S., and Hamachi, I., Chem.-Eur. J., 2005, vol. 11, p. 1130.CrossRefGoogle Scholar
  13. 13.
    Minakuchi, N., Hoe, K., Yamaki, D., Ten-no, S., Nakashima, K., Goto, M., Mizuhata, M., and Maruyama, T., Langmuir, 2012, vol. 28, p. 9259.CrossRefGoogle Scholar
  14. 14.
    Rouse, C.K., Martin, A.D., Easton, C.J., and Thordarson, P., Sci. Rep., 2017, vol. 7, p. 43668.CrossRefGoogle Scholar
  15. 15.
    Du, X., Zhou, J., Shi, J., and Xu, B., Chem. Rev., 2015, vol. 115, p. 13165.CrossRefGoogle Scholar
  16. 16.
    Buerkle, L.E. and Rowan, S.J., Chem. Soc. Rev., 2012, vol. 41, p. 6089.CrossRefGoogle Scholar
  17. 17.
    Brizard, A., Stuart, M., Van Bommel, K., Friggeri, A., De Jong, M., and Van Esch, J., Angew. Chem., Int. Ed. Engl., 2008, vol. 47, p. 2063.CrossRefGoogle Scholar
  18. 18.
    Brizard, A.M., Stuart, M.C.A., and Esch, J.H., Faraday Discuss., 2008, vol. 143, p. 345.CrossRefGoogle Scholar
  19. 19.
    Fuhrhop, J.H., Svenson, S., Boettcher, C., Roessler, E., and Vieth, H.M., J. Am. Chem. Soc., 1990, vol. 112, p. 4037.CrossRefGoogle Scholar
  20. 20.
    Xie, H., Asad Ayoubi, M., Lu, W., Wang, J., Huang, J., and Wang, W., Sci. Rep., 2017, vol. 7, p. 8459.CrossRefGoogle Scholar
  21. 21.
    Wang, W., Lu, W., and Jiang, L., J. Phys. Chem. B, 2008, vol. 112, p. 1409.CrossRefGoogle Scholar
  22. 22.
    Xie, H., Lu, W., Wang, J., and Wang, W., RSC Adv., 2017, vol. 7, p. 22079.CrossRefGoogle Scholar
  23. 23.
    Ryan, D.M. and Nilsson, B.L., Polym. Chem., 2012, vol. 3, p. 18.CrossRefGoogle Scholar
  24. 24.
    Haynes, W.M., Handbook of Physics and Chemistry, London: CRC, 2012.Google Scholar
  25. 25.
    Krishnan, R.S., Sankaranarayanan, V.N., and Krishnan, K., J. Indian Inst. Sci., 1973, vol. 55, p. 66.Google Scholar
  26. 26.
    Adler-Abramovich, L., Vaks, L., Carny, O., Trudler, D., Magno, A., Caflisch, A., Dan, F., and Gazit, E., Nat. Chem. Biol., 2012, vol. 8, p. 701.CrossRefGoogle Scholar
  27. 27.
    Ilavsky, J. and Jemian, P.R., J. Appl. Crystallogr., 2009, vol. 42, p. 347.CrossRefGoogle Scholar
  28. 28.
    Torii, K. and Iitaka, Y., Acta Crystallogr., 1970, vol. 26, p. 1317.CrossRefGoogle Scholar
  29. 29.
    Ihlefeldt, F.S., Pettersen, F.B., von Bonin, A., Zawadzka, M., and Gorbitz, C.H., Angew. Chem., Int. Ed. Engl., 2014, vol. 53, p. 13600.CrossRefGoogle Scholar
  30. 30.
    Winter, H.H. and Chambon, F., J. Rheol. (NY), 1986, vol. 30, p. 367.CrossRefGoogle Scholar
  31. 31.
    Winter, H.H., Permanent and Transient Networks, Darmstadt: Steinkopff, 1987.Google Scholar
  32. 32.
    Muthukumar, M., Macromolecules, 1989, vol. 22, p. 4656.CrossRefGoogle Scholar
  33. 33.
    Chambon, F. and Winter, H.H., J. Rheol. (NY), 1987, vol. 31, p. 683.CrossRefGoogle Scholar
  34. 34.
    Adhikari, B., Nanda, J., and Banerjee, A., Soft Matter, 2011, vol. 7, p. 8913.CrossRefGoogle Scholar
  35. 35.
    Yang, Z., Gu, H., Fu, D., Gao, P., Lam, J.K., and Xu, B., Adv. Mater. (Weinheim, Fed. Repub. Ger.), 2004, vol. 16, p. 1440.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Ministry Key Laboratory of Oil and Gas Fine Chemical, College of Chemistry and Chemical Engineering, Xinjiang UniversityUrumqiChina
  2. 2.Novel Drug Delivery Systems Department, Iran Polymer and Petrochemical InstituteTehranIran
  3. 3.Department of Chemistry and Centre for Pharmacy, University of BergenBergenNorway

Personalised recommendations