Advertisement

Colloid Journal

, Volume 81, Issue 3, pp 245–252 | Cite as

The Effect of Dustiness of Combustion Products and Coagulation Processes on the Parameters of Submicron Particles Resulting from Coal Burning

  • N. M. KortsenshteynEmail author
  • L. V. Petrov
Article
  • 7 Downloads

Abstract

Homogeneous–heterogeneous bulk condensation of potassium sulfate vapor has been numerically simulated in a dusty vapor–gas flow of coal combustion products upon their cooling along a technological path. A closed model that we have proposed for the formation of submicron particles in coal combustion products has been employed. Data have been obtained on the concentration and size distribution of particles formed at varied parameters of heterogeneous condensation sites and rates of variations in the temperature of the flow. Variations in the relative contributions of the homogeneous and heterogeneous mechanisms with variations in flow dustiness have been considered. A criterion enabling one to judge the effect of flow dustiness on the bulk condensation process has been proposed. This criterion takes into account both dust parameters and rate of temperature variations in a condensation zone. Data have been presented on the influence of coagulation processes on the parameters of submicron particles resulting from coal combustion.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 16-08-00182a.

REFERENCES

  1. 1.
    Dockery, D.W., Pope, C.A., Xu, X.P., Spengler, J.D., Ware, J.H., Fay, M.E., Ferris, B.G., and Speizer, F.E., N. Engl. J. Med., 1993, vol. 329, p. 1753.CrossRefGoogle Scholar
  2. 2.
    http://base.garant.ru/71126758/Google Scholar
  3. 3.
    www.crs.govGoogle Scholar
  4. 4.
    Jin, Y., Andersson, H., and Zhang, S., Int. J. Environ. Res. Publ. Health, 2016, vol. 13, p. 1219.CrossRefGoogle Scholar
  5. 5.
    Vejahati, F., Xu, Z., and Gupta, R., Fuel, 2010, vol. 89, p. 904.CrossRefGoogle Scholar
  6. 6.
    Soco, E. and Kalembkiewicz, J., Fuel, 2009, vol. 88, p. 1513.CrossRefGoogle Scholar
  7. 7.
    Li, J., Zhuang, X., and Querol, X., Fuel, 2011, vol. 90, p. 240.CrossRefGoogle Scholar
  8. 8.
    Zhang, L. and Ninomiya, Y., Fuel, 2006, vol. 85, p. 194.CrossRefGoogle Scholar
  9. 9.
    Lockwood, F.C. and Yousif, S., Fuel Process. Technol., 2000, vols. 65—66, p. 439.CrossRefGoogle Scholar
  10. 10.
    Tomeczek, J. and Palugniok, H., Fuel, 2002, vol. 81, p. 1251.CrossRefGoogle Scholar
  11. 11.
    Gao, Q., Li, S., Yang, M., Biswas, P., and Qiang, Y., Proc. Combust. Inst., 2017, vol. 36, p. 2083.CrossRefGoogle Scholar
  12. 12.
    Kortsenshteyn, N.M., Lebedeva, L.N., Petrov, L.V., and Samuilov, E.V., Colloid J., 2015, vol. 77, p. 165.CrossRefGoogle Scholar
  13. 13.
    Kortsenshteyn, N.M. and Petrov, L.V., Thermal Engineering, 2018, vol. 65, p. 435.Google Scholar
  14. 14.
    Kuni, F.M., Shchekin, A.K., Rusanov, A.I., and Widom, B., Adv. Colloid Interface Sci., 1996, vol. 65, p. 71.CrossRefGoogle Scholar
  15. 15.
    Kuni, F.M., Shchekin, A.K., and Grinin, A.P., Usp. Fiz. Nauk, 2001, vol. 171, p. 345.CrossRefGoogle Scholar
  16. 16.
    Brin’, A.A., Fisenko, S.P., and Shaber, K., Colloid J., 2009, vol. 71, p. 455.CrossRefGoogle Scholar
  17. 17.
    Chirikhin, A.V., Techenie kondensiruyushchikhsya i zapylennykh sred v soplakh aerodinamicheskikh trub (Flow of Condensing and Dusted Media in Aerodynamic Tube Nozzles), Moscow: Fizmatlit, 2011.Google Scholar
  18. 18.
    Kortsenshteyn, N.M. and Yastrebov, A.K., Colloid J., 2016, vol. 78, p. 472.CrossRefGoogle Scholar
  19. 19.
    Sternin, L.E., Osnovy gazodinamiki dvukhfaznykh te-chenii v soplakh (Fundamentals of Gas Dynamics of Two-Phase Flows in Nozzles), Moscow: Mashinostroenie, 1974.Google Scholar
  20. 20.
    Kashchiev, D., Nucleation. Basic Theory with Applications, Burlington: Butterworth–Heinemann, 2000.Google Scholar
  21. 21.
    Fuchs, N.A., Evaporation and Droplet Growth in Gaseous Media, New York: Pergamon Press, 1959.Google Scholar
  22. 22.
    Giesen, A., Kowalik, A., and Roth, P., Phase Transitions, Ser. B, 2004, vol. 77, p. 115.Google Scholar
  23. 23.
    Pathak, H., Mullick, K., Shinobu, T., and Wyslouzil, B.E., Aerosol Sci. Technol., 2013, p. 1310.Google Scholar
  24. 24.
    Kortsenshteyn, N.M. and Petrov, L.V., Colloid J., 2017, vol. 79, p. 333.CrossRefGoogle Scholar
  25. 25.
    Derevich, I.V., Int. J. Heat Mass Transfer, 2006, vol. 49, p. 4290.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Krzhizhanovskii Power Engineering InstituteMoscowRussia

Personalised recommendations