Colloid Journal

, Volume 81, Issue 3, pp 226–234 | Cite as

Ag(0) Nanoparticles Stabilized with Poly(Ethylene Glycol)s Modified with Amino Groups: Formation and Properties in Solutions

  • A. S. Gubarev
  • A. A. Lezov
  • M. E. Mikhailova
  • A. S. Senchukova
  • E. V. Ubyivovk
  • T. N. Nekrasova
  • N. V. Girbasova
  • A. Yu. Bilibin
  • N. V. TsvetkovEmail author


Reducing and stabilizing abilities of three poly(ethylene glycol) (PEG) samples modified with primary amino groups in one or two terminal positions of the polymer chains, as well as with dendrons based on L-aspartic acid in both terminal positions of the polymer chains, have been studied. Stable dispersions of silver nanoparticles have been formed at room temperature in aqueous solutions of AgNO3 in the presence of the modified PEGs without additional reducing agents. Spectrophotometric examinations have shown that an increase in the number of amino groups per polymer molecule results in accelerating the formation of nanoparticles and improving the stabilizing ability of the modified PEGs. Molecular hydrodynamic methods (analytical centrifugation and dynamic light scattering) have been used to determine the absolute values of the molecular mass of silver nanoparticles stabilized with dendronized PEGs and the hydrodynamic sizes of the particles. Molecular hydrodynamics and electron microscopy have yielded interconsistent estimates of silver nanoparticle sizes.



This work was supported by the Russian Science Foundation, project no. 16-13-10148.


  1. 1.
    Qureshi, Z.A., Ali, H.M., and Khushnood, S., Int. J. Heat Mass Transfer, 2018, vol. 127, p. 838.CrossRefGoogle Scholar
  2. 2.
    Khan, R., Zulfiqar, Levartoski de Araujo, C.I., Khan, T., Rahman, M.U., Rehman, Z.U., Khan, A., Ullah, B., and Fashu, S., J. Mater. Sci.: Mater. Electron., 2018, vol. 29, p. 9785.Google Scholar
  3. 3.
    Kim, E., Park, S., Han, Y.S., and Kim, T.H., Polymer, 2018, vol. 150, p. 214.CrossRefGoogle Scholar
  4. 4.
    Zor, E., Talanta, 2018, vol. 184, p. 149.CrossRefGoogle Scholar
  5. 5.
    Zhou, Y., Zhao, Y., Reed, J.M., Gomez, P.M., and Zou, S., J. Phys. Chem. C, 2018, vol. 122, p. 12428.CrossRefGoogle Scholar
  6. 6.
    Sharma, N., Ojha, H., Bharadwaj, A., Pathak, D.P., and Sharma, R.K., RSC Adv., 2015, vol. 5, p. 53381.CrossRefGoogle Scholar
  7. 7.
    Zodrow, K., Brunet, L., Mahendra, S., Li, D., Zhang, A., Li, Q., and Alvarez, P.J.J., Water Res., 2009, vol. 43, p. 715.CrossRefGoogle Scholar
  8. 8.
    Basri, H., Ismail, A.F., and Aziz, M., Membr. Water Treat., 2011, vol. 2, p. 25.CrossRefGoogle Scholar
  9. 9.
    Maharubin, S., Zhou, Y., and Tan, G.Z., Sep. Purif. Technol., 2019, vol. 212, p. 57.CrossRefGoogle Scholar
  10. 10.
    Feizi, S., Taghipour, E., Ghadam, P., and Mohammadi, P., Microb. Pathog., 2018, vol. 125, p. 33.CrossRefGoogle Scholar
  11. 11.
    Vysotsky, V.V., Uryupina, O.Ya., Roldughin, V.I., and Plachev, Yu.A., Colloid J., 2009, vol. 71, p. 156.CrossRefGoogle Scholar
  12. 12.
    Senchikhin, I.N., Uryupina, O.Ya., Zhavoronok, E.S., Vysotsky, V.V., and Roldughin, V.I., Colloid J., 2016, vol. 78, p. 505.CrossRefGoogle Scholar
  13. 13.
    Dement’eva, O.V., Mal’kovskii, A.V., Filippenko, M.A., and Rudoy, V.M., Colloid J., 2008, vol. 70, p. 561.CrossRefGoogle Scholar
  14. 14.
    Ershov, B.G. and Abkhalimov, E.V., Colloid J., 2007, vol. 69, p. 579.CrossRefGoogle Scholar
  15. 15.
    Abkhalimov, E.V., Parsaev, A.A., and Ershov, B.G., Colloid J., 2011, vol. 73, p. 1.CrossRefGoogle Scholar
  16. 16.
    Pillai, Z.S. and Kamat, P.V., J. Phys. Chem. B, 2004, vol. 108, p. 945.CrossRefGoogle Scholar
  17. 17.
    Dai, Y. and Zhang, X., Macromol. Mater. Eng., 2018, vol. 303, p. 1800105.CrossRefGoogle Scholar
  18. 18.
    Garamus, V.M., Maksimova, T., Richtering, W., Aymonier, C., Thomann, R., Antonietti, L., and Mecking, S., Macromolecules, 2004, vol. 37, p. 7893.CrossRefGoogle Scholar
  19. 19.
    Esumi, K., Houdatsu, H., and Yoshimura, T., Langmuir, 2004, vol. 20, p. 2536.CrossRefGoogle Scholar
  20. 20.
    Yu, Y., Lin, C., Li, B., Zhao, P., and Zhang, S., Green Chem., 2016, vol. 18, p. 3647.CrossRefGoogle Scholar
  21. 21.
    Brust, M., Fink, J., Bethell, D., Schiffrin, D.J., and Kiely, C., J. Chem. Soc., Chem. Commun., 1995, p. 1655.Google Scholar
  22. 22.
    Zhang, J., Yan, Z., Fu, L., Zhang, Y., Yang, H., Ouyang, J., and Chen, D., Appl. Clay Sci., 2018, vol. 166, p. 166.CrossRefGoogle Scholar
  23. 23.
    Turkevich, J., Stevenson, P.C., and Hillier, J., Discuss. Faraday Soc., 1951, vol. 11, p. 55.CrossRefGoogle Scholar
  24. 24.
    Wang, L.P., Huang, Y.B., and Lai, Y.H., Appl. Surf. Sci., 2018, vol. 435, p. 290.CrossRefGoogle Scholar
  25. 25.
    Velikov, K.P., Zegers, G.E., and Van Blaaderen, A., Langmuir, 2003, vol. 19, p. 1384.CrossRefGoogle Scholar
  26. 26.
    Evanoff, D.D., Jr. and Chumanov, G., J. Phys. Chem. B, 2004, vol. 108, p. 13948.CrossRefGoogle Scholar
  27. 27.
    De Souza, V.C., Barros, C.H.N., Tasic, L., Gimenez, I.F., and Teixeira Camargo, Z., Carbohydr. Res., 2018, vol. 202, p. 11.CrossRefGoogle Scholar
  28. 28.
    Ortega-Munoz, M., Blanco, V., Hernandez-Mateo, F., Lopez-Jaramillo, F.J., and Santoyo-Gonzalez, F., ChemCatChem, 2017, vol. 9, p. 3965.CrossRefGoogle Scholar
  29. 29.
    Fereshteh, Z., Rojaee, R., and Sharifnabi, A., Superlattices Microstruct., 2016, vol. 98, p. 267.CrossRefGoogle Scholar
  30. 30.
    Luo, C., Zhang, Y., Zeng, X., Zeng, Y., and Wang, Y., J. Colloid Interface Sci., 2005, vol. 288, p. 444.CrossRefGoogle Scholar
  31. 31.
    Nekrasova, T.N., Zolotova, Yu.I., Nazarova, O.V., Levit, M.L., Suvorova, E.I., Sirotkin, A.K., Baklagina, Yu.G., Didenko, E.V., Pautov, V.D., and Panarin, E.F., Dokl., 2012, vol. 446, p. 527.Google Scholar
  32. 32.
    Nekrasova, T.N., Andreeva, L.N., Lezov, A.A., Bezrukova, M.A., Nazarova, O.V., Zolotova, Yu.I., Tsvetkov, N.V., and Panarin, E.F., Polym. Sci., Ser. A, 2015, vol. 57, p. 103.CrossRefGoogle Scholar
  33. 33.
    Zolotova, Yu.I., Nazarova, O.V., Nekrasova, T.N., Bezrukova, M.A., Melent’ev, A.V., Dobrodumov, A.V., and Panarin, E.F., Russ. J. Appl. Chem., 2018, vol. 91, p. 623.CrossRefGoogle Scholar
  34. 34.
    Chen, M., Feng, Y.G., Wang, X., Li, T.C., Zhang, J.Y., and Qian, D.J., Langmuir, 2007, vol. 23, p. 5296.CrossRefGoogle Scholar
  35. 35.
    Girbasova, N.V., Migunova, N.V., Raspopova, I.R., and Bilibin, A.Yu., Polym. Sci., Ser. A, 2003, vol. 45, p. 320.Google Scholar
  36. 36.
    Schuck, P., Biophys. J., 2000, vol. 78, p. 1606.CrossRefGoogle Scholar
  37. 37. Scholar
  38. 38.
    Huggins, M.L., J. Phys. Chem., 1938, vol. 42, p. 911.CrossRefGoogle Scholar
  39. 39.
    Kraemer, E.O., Ind. Eng. Chem., 1938, vol. 30, p. 1200.CrossRefGoogle Scholar
  40. 40.
    Kratky, O., Leopold, H., and Stabinger, H., Methods Enzymol., 1973, vol. 27, p. 98.CrossRefGoogle Scholar
  41. 41.
    Wohlfarth, C., in Polymer Solutions: Physical Properties and Their Relations I (Thermodynamic Properties: PVT Data and Miscellaneous Properties of Polymer Solutions), Lechner, M.D. and Arndt, K.F, Eds., Berlin: Springer, 2010, p. 461.Google Scholar
  42. 42.
    Kawaguchi, S., Imai, G., Suzuki, J., Miyahara, A., Kitano, T., and Ito, K., Polymer, 1997, vol. 38, p. 2885.CrossRefGoogle Scholar
  43. 43.
    Grube, M., Leiske, M.N., Schubert, U.S., and Nischang, I., Macromolecules, 2018, vol. 51, p. 1905.CrossRefGoogle Scholar
  44. 44.
    Tsvetkov, V.N., Rigid-Chain Polymers, London: Plenum, 1989.Google Scholar
  45. 45.
    Pavlov, G.M., Perevyazko, I.Y., Okatova, O.V., and Schubert, U.S., Methods, 2011, vol. 54, p. 124.CrossRefGoogle Scholar
  46. 46.
    Perevyazko, I., Gubarev, A.S., Tauhardt, L., Dobrodumov, A., Pavlov, G.M., and Schubert, U.S., Polym. Chem., 2017, vol. 8, p. 7169.CrossRefGoogle Scholar
  47. 47.
    Gubarev, A.S., Monnery, B.D., Lezov, A.A., Sedlacek, O., Tsvetkov, N.V., Hoogenboom, R., and Filippov, S.K., Polym. Chem., 2018, vol. 9, p. 2232.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. S. Gubarev
    • 1
  • A. A. Lezov
    • 1
  • M. E. Mikhailova
    • 1
  • A. S. Senchukova
    • 1
  • E. V. Ubyivovk
    • 1
  • T. N. Nekrasova
    • 2
  • N. V. Girbasova
    • 3
  • A. Yu. Bilibin
    • 3
  • N. V. Tsvetkov
    • 1
    Email author
  1. 1.Department of Molecular Biophysics and Polymer Physics, St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute of Macromolecular Compounds, Russian Academy of SciencesSt. PetersburgRussia
  3. 3.St. Petersburg State University, Institute of ChemistrySt. PetersburgRussia

Personalised recommendations