Colloid Journal

, Volume 81, Issue 3, pp 219–225 | Cite as

The Experimental Study of Evaporation of Water–Alcohol Solution Droplets

  • V. Yu. Borodulin
  • V. N. Letushko
  • M. I. Nizovtsev
  • A. N. SterlyagovEmail author


Experimental data have been presented on the evaporation of water–alcohol solution droplets with different concentrations. The droplets have been suspended by a thread and applied onto a planar surface. The dynamics of variations in the geometric parameters of the evaporating water–alcohol solution droplets has been studied with the use of high-speed microphotography. Infrared thermography has been employed to confirm the three-stage variation in the surface temperature of the evaporating droplets, namely, an initial dramatic decrease in the temperature, the stage of a constant temperature, and its smooth increase up to the ambient air temperature. The experimental data have shown an essential influence of the solution concentration on the droplet evaporation process. The higher the ethanol concentration in a droplet, the closer the character of variations in the surface temperature and geometric parameters of the droplet to the variations in the same parameters of an alcohol droplet.



  1. 1.
    Chandra, S., Di Marzo, M., Qiao, Y.M., and Tartarini, P., Fire Saf. J., 1996, vol. 27, p. 141.CrossRefGoogle Scholar
  2. 2.
    Sefiane, K., Tadrist, L., and Douglas, M., Int. J. Heat Mass Transfer, 2003, vol. 46, p. 4527.CrossRefGoogle Scholar
  3. 3.
    Cheng, A.K.H., Soolaman, D.M., and Yu, H.Z., J. Phys. Chem. B, 2006, vol. 110, p. 11267.CrossRefGoogle Scholar
  4. 4.
    Sefiane, K., David, S., and Shanahan, M.E.R., J. Phys. Chem. B, 2008, vol. 112, p. 11317.CrossRefGoogle Scholar
  5. 5.
    Shi, L., Shen, P., Zhang, D., Lin, Q., and Jiang, Q., Surf. Interface Anal., 2009, vol. 41, p. 951.CrossRefGoogle Scholar
  6. 6.
    Saverchenko, V.I., Fisenko, S.P., and Khodyko, Yu.A., Colloid J., 2015, vol. 77, p. 71.CrossRefGoogle Scholar
  7. 7.
    Kuznetsov, G.V., Feoktistov, D.V., and Orlova, E.G., Teplofiz. Aeromekh., 2016, vol. 23, p. 17.Google Scholar
  8. 8.
    Kuchma, A.E., Esipova, N.E., Mikheev, A.A., Shchekin, A.K., and Itskov, S.V., Colloid J., 2017, vol. 79, p. 779.CrossRefGoogle Scholar
  9. 9.
    Liu, C., Bonaccurso, E., and Butt, H.J., Phys. Chem. Chem. Phys., 2008, vol. 10, p. 7150.CrossRefGoogle Scholar
  10. 10.
    Oztürk, T. and Erbil, H.Y., Colloids Surf. A, 2018, vol. 553, p. 327.CrossRefGoogle Scholar
  11. 11.
    David, S., Sefiane, K., and Tadrist, L., Colloids Surf. A, 2007, vol. 298, p. 108.CrossRefGoogle Scholar
  12. 12.
    Dunn, G.J., Wilson, S.K., Duffy, B.R., David, S., and Sefiane, K., J. Fluid Mech., 2009, vol. 623, p. 329.CrossRefGoogle Scholar
  13. 13.
    Bazargan, V. and Stoeber, B., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2016, vol. 94, p. 033103.CrossRefGoogle Scholar
  14. 14.
    Borodulin, V.Y., Letushko, V.N., Nizovtsev, M.I., and Sterlyagov, A.N., MATEC Web of Conferences, 2017, vol. 115, p. 08005.Google Scholar
  15. 15.
    Han, K., Song, G., Ma, X., and Yang, B., Appl. Therm. Eng., 2016, vol. 101, p. 568.CrossRefGoogle Scholar
  16. 16.
    Terekhov, V.I. and Shishkin, N.E., Polzunovsk. Vestn., 2010, no. 1, p. 55.Google Scholar
  17. 17.
    Sefiane, K., Moffat, J.R., Matar, O.K., and Craster, R.V., Appl. Phys. Lett., 2008, vol. 93, p. 074103.CrossRefGoogle Scholar
  18. 18.
    Hamamoto, Y., Christy, J.R.E., and Sefiane, K., J. Therm. Sci. Technol., 2012, vol. 7, p. 425.CrossRefGoogle Scholar
  19. 19.
    Nakoryakov, V.E., Misyura, S.Y., and Elistratov, L., J. Eng. Thermophys., 2013, vol. 22, p. 1.CrossRefGoogle Scholar
  20. 20.
    Bochkareva, E.M., Terekhov, V.V., Nazarov, A.D., and Miskiv, N.B., J. Phys.: Conf. Ser., 2017, vol. 891, p. 012010.Google Scholar
  21. 21.
    Brutin, D., Sobac, B., Rigollet, F., and Le Niliot, C., Exp. Therm. Fluid Sci., 2011, vol. 35, p. 521.CrossRefGoogle Scholar
  22. 22.
    Fedorets, A.A., Dombrovsky, L.A., and Medvedev, D.N., JETP Lett., 2015, vol. 102, p. 452.CrossRefGoogle Scholar
  23. 23.
    Borodulin, V.Y., Letushko, V.N., Nizovtsev, M.I., and Sterlyagov, A.N., Int. J. Heat Mass Transfer, 2017, vol. 109, p. 609.CrossRefGoogle Scholar
  24. 24.
    Kuchma, A.E., Shchekin, A.K., Esipova, N.E., Tat’yanenko, D.V., Itskov, S.V., and Savin, A.V., Colloid J., 2017, vol. 79, p. 353.CrossRefGoogle Scholar
  25. 25.
    Sterlyagov, A.N., Letushko, V.N., Nizovtsev, M.I., and Borodulin, V.Yu., J. Phys.: Conf. Ser., 2018, vol. 1105, p. 012068.Google Scholar
  26. 26.
    Zolotarev, V.I. and Demin, V.A., Opt. Spektrosk., 1977, vol. 43, p. 271.Google Scholar
  27. 27.
    Brutin, D., Zhu, Z.Q., Rahli, O., Xie, J.C., Liu, Q.S., and Tadrist, L., Microgravity Sci. Technol., 2010, vol. 22, p. 387.CrossRefGoogle Scholar
  28. 28.
    Lebedev-Stepanov, P.V., Vvedenie v samosborku ansamblei nanochastits (An Introduction to Self-Assembly of Nanoparticle Ensembles), Moscow: NIYaU MIFI, 2012.Google Scholar
  29. 29.
    Fuks, N.A., Rost i isparenie kapel’ v gazoobraznoi srede (Droplet Growth and Evaporation in Gaseous Medium), Moscow: Akad. Nauk SSSR, 1958.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. Yu. Borodulin
    • 1
  • V. N. Letushko
    • 1
  • M. I. Nizovtsev
    • 1
  • A. N. Sterlyagov
    • 1
    Email author
  1. 1.Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations