Advertisement

Colloid Journal

, Volume 81, Issue 3, pp 211–218 | Cite as

Spontaneous Nucleation in Superheated Helium Solutions in Methane

  • V. G. BaidakovEmail author
Article
  • 2 Downloads

Abstract

The kinetics of spontaneous boiling of liquid methane saturated with helium has been studied in experiments on measuring the lifetime of the superheated liquid. The temperature dependence of nucleation frequency J has been determined in a range from 104 to 108 s–1 m–3 at pressures \(p\) = 1.6 and 2.0 MPa and helium concentrations in liquid methane \(x\) = 0.06 and 0.10 mol %. The experimental results have been compared with the data of the classical nucleation theory. As in the case of pure methane, the solution superheating temperatures reached in the experiments at J > 4 × 106 s–1 m–3 appear to be systematically lower (by 0.6–1.0 K) than their theoretical values. It has been shown that the discrepancy between the theoretical and experimental data is associated with the size dependence of the surface tension at the critical bubble–solution interface.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 18-08-00403.

I am grateful to A.M. Kaverin and A.S. Pankov for the help in the implementation of the work.

REFERENCES

  1. 1.
    Sulla, J., Demicheva, M., and Casal, J., J. Loss Prev. Process Ind., 2006, vol. 19, p. 690.CrossRefGoogle Scholar
  2. 2.
    Pruess, K. and Narasimhan, T.N., J. Geophys. Res., 1982, vol. 87, p. 9329.CrossRefGoogle Scholar
  3. 3.
    Sahagian, D., Nature (London), 1999, vol. 402, p. 589.CrossRefGoogle Scholar
  4. 4.
    Lensky, N.G., Navon, O., and Lyakhovsky, V., J. Volcanol. Geotherm. Res., 2004, vol. 129, p. 7.CrossRefGoogle Scholar
  5. 5.
    L’Heureux, J., J. Geophys. Res. B, 2007, vol. 112, p. B12208.CrossRefGoogle Scholar
  6. 6.
    Rubin, M.B. and Noyes, R.M., J. Phys. Chem., 1987, vol. 91, p. 4193.CrossRefGoogle Scholar
  7. 7.
    Rubin, M.B. and Noyes, R.M., J. Phys. Chem., 1992, vol. 96, p. 993.CrossRefGoogle Scholar
  8. 8.
    Skripov, V.P., Metastabil’naya zhidkost’ (Metastable Liquid), Moscow: Nauka, 1972.Google Scholar
  9. 9.
    Skripov, V.P., Sinitsyn, E.N., Pavlov, P.A., Ermakov, G.V., Muratov, G.N., Bulanov, N.V., and Baidakov, V.G., Teplofizicheskie svoistva zhidkostei v metastabil’nom sostoyanii (Thermophysical Properties of Liquids in Metastable State), Moscow: Atomizdat, 1980.Google Scholar
  10. 10.
    Baidakov, V.G., Explosive Boiling of Superheated Cryogenic Liquids, Weinheim: Wiley, 2007.CrossRefGoogle Scholar
  11. 11.
    Hemmingsen, E.A., Science (Washington, D. C.), 1970, vol. 167, p. 1493.CrossRefGoogle Scholar
  12. 12.
    Gerth, W.A. and Hemmingsen, E.A., Z. Naturforsch., A: Phys. Sci., 1976, vol. 31, p. 1711.Google Scholar
  13. 13.
    Finkelstein, Y. and Tamir, A., AIChE J., 1985, vol. 31, p. 1409.CrossRefGoogle Scholar
  14. 14.
    Bowers, P.G., Hofstetter, C., Ngo, H.L., and Toomey, R.T., J. Colloid Interface Sci., 1999, vol. 215, p. 441.CrossRefGoogle Scholar
  15. 15.
    Mori, Y., Hijikata, K., and Nagatani, T., Int. J. Heat Mass Transfer, 1976, vol. 19, p. 1153.CrossRefGoogle Scholar
  16. 16.
    Forest, T.W. and Ward, C.A., J. Chem. Phys., 1977, vol. 66, p. 2322.CrossRefGoogle Scholar
  17. 17.
    Bowers, P.G., Hofstelter, C., Letter, G.R., and Toomey, R.T., J. Phys. Chem., 1995, vol. 99, p. 9632.CrossRefGoogle Scholar
  18. 18.
    Bowers, P.G., Bar-Eli, K., and Noyes, R.M., J. Chem. Soc., Faraday Trans., 1996, vol. 92, p. 2843.CrossRefGoogle Scholar
  19. 19.
    Baidakov, V.G., Kaverin, A.M., and Boltachev, G., J. Phys. Chem. B, 2002, vol. 106, p. 167.CrossRefGoogle Scholar
  20. 20.
    Baidakov, V.G., Chem. Phys. Lett., 2008, vol. 462, p. 201.CrossRefGoogle Scholar
  21. 21.
    Baidakov, V.G., Kaverin, A.M., and Andbaeva, V.N., J. Phys. Chem. B, 2008, vol. 112, p. 12973.CrossRefGoogle Scholar
  22. 22.
    Nesis, E.I. and Frenkel’, Ya.I., Zh. Tekh. Fiz., 1952, vol. 22, p. 1500.Google Scholar
  23. 23.
    Staufer, D., J. Aerosol Sci., 1976, vol. 7, p. 319.CrossRefGoogle Scholar
  24. 24.
    Trinkaus, H., Phys. Rev. B, 1983, vol. 27, p. 7372.CrossRefGoogle Scholar
  25. 25.
    Zitserman, V.Yu. and Berezhkovskii, L.M., Zh. Fiz. Khim., 1990, vol. 64, p. 1795.Google Scholar
  26. 26.
    Derjaguin, B.V. and Prokhorov, A.V., Kolloidn. Zh., 1982, vol. 44, p. 847.Google Scholar
  27. 27.
    Kuni, F.M., Ogenko, V.M., Ganyuk, L.M., and Grechko, L.G., Kolloidn. Zh., 1993, vol. 55, p. 22.Google Scholar
  28. 28.
    Melikhov, A.A., Trofimov, Yu.V., and Kuni, F.M., Kolloidn. Zh., 1994, vol. 56, p. 201.Google Scholar
  29. 29.
    Baidakov, V.G., J. Chem. Phys., 1999, vol. 110, p. 3955.CrossRefGoogle Scholar
  30. 30.
    Kuchma, A.E., Shchekin, A.K., and Martyukova, D.S., J. Chem. Phys., 2018, vol. 148, p. 234103.CrossRefGoogle Scholar
  31. 31.
    Ward, C.A., Balakrishnan, A., and Hooper, F.C., Trans. ASME, 1970, vol. 92, p. 695.Google Scholar
  32. 32.
    Kwak, H. and Panton, R.N., J. Chem. Phys., 1983, vol. 78, p. 5795.CrossRefGoogle Scholar
  33. 33.
    Gibbs, J.W., The Collected Works, New York: Longmans and Green, 1928.Google Scholar
  34. 34.
    Zel’dovich, Ya.B., Zh. Eksp. Teor. Fiz., 1942, vol. 12, p. 525.Google Scholar
  35. 35.
    Protsenko, S.P., Baidakov, V.G., Teterin, A.S., and Zhdanov, E.R., J. Chem. Phys., 2007, vol. 126, p. 094502.CrossRefGoogle Scholar
  36. 36.
    Kagan, Yu.M., Zh. Fiz. Khim., 1960, vol. 34, p. 92.Google Scholar
  37. 37.
    Baidakov, V.G., Kaverin, A.M., and Boltachev, G.Sh., J. Chem. Phys., 1997, vol. 106, p. 5648.CrossRefGoogle Scholar
  38. 38.
    Baidakov, V.G., Kaverin, A.M., and Skripov, V.P., Kolloidn. Zh., 1980, vol. 42, p. 314.Google Scholar
  39. 39.
    Baidakov, V.G. and Grishina, K.A., Fluid Phase Equilib., 2013, vol. 354, p. 245.CrossRefGoogle Scholar
  40. 40.
    Baidakov, V.G., Khvostov, K.V., and Muratov, G.N., Zh. Fiz. Khim., 1982, vol. 56, p. 814.Google Scholar
  41. 41.
    Sinor, J.E., Schindler, D.L., and Kurata, F., AIChE J., 1966, vol. 12, p. 353.CrossRefGoogle Scholar
  42. 42.
    Heck, C.K. and Hiza, M.J., AIChE J., 1967, vol. 13, p. 593.CrossRefGoogle Scholar
  43. 43.
    DeVaney, W.E., Rhodes, H.L., and Tully, P.C., J. Chem. Eng. Data, 1971, vol. 16, p. 158.CrossRefGoogle Scholar
  44. 44.
    Kunz, O. and Wagner, W., J. Chem. Eng. Data, 2012, vol. 57, p. 3032.CrossRefGoogle Scholar
  45. 45.
    Hellemans, J., Zink, H., and Van Paemel, O., Physica, 1970, vol. 46, p. 395.CrossRefGoogle Scholar
  46. 46.
    Baidakov, V.G. and Skripov, V.P., Zh. Fiz. Khim., 1982, vol. 56, p. 818.Google Scholar
  47. 47.
    Baidakov, V.G., Protsenko, S.P., and Brukhanov, V.M., Fluid Phase Equilib., 2019, vol. 481, p. 1. Google Scholar
  48. 48.
    Baidakov, V.G. and Khotienkova, M.N., Fluid Phase Equilib., 2016, vol. 425, p. 402.CrossRefGoogle Scholar
  49. 49.
    Baidakov, V.G. and Pankov, A.S., Int. J. Heat Mass Transfer, 2015, vol. 86, p. 930.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Thermal Physics, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations