Colloid Journal

, Volume 81, Issue 3, pp 261–271 | Cite as

A Study of Cryostructuring of Polymer Systems. 51. The Combined Influence of Porous Cellulose-Containing Dispersed Fillers and Salting-Out Electrolytes on the Physicochemical Properties of Composite Poly(vinyl alcohol) Cryogels

  • E. A. Podorozhko
  • V. G. Vasil’ev
  • N. K. Vasiliev
  • V. I. LozinskyEmail author


Composite poly(vinyl alcohol) (PVA) cryogels comprising dispersed porous cellulose-containing fillers (microcrystalline cellulose, wood sawdust) and salting-out electrolytes (Na2SO4, NaF) have been prepared by freezing at –20°C, incubation in the frozen state for 12 h, and defrosting at a rate of 0.03°C/min. The influence of the chemical nature and concentration of the soluble additives and fillers on the rheological behavior of initial suspensions, as well as the morphology of macropores and physicochemical and thermophysical properties of corresponding composite cryogels, has been studied. Viscometric studies have shown that, because of the salting-out action of the electrolytes, the viscosity of PVA solutions decreases due to the compaction of macromolecular coils. However, in the case of filler suspensions, the viscosity increases owing to the enhancement of the adhesion interactions between the discrete and continuous phases, thereby affecting the rigidity and heat endurance of filled cryogels resulting from the freezing–defrosting of such suspensions. The most pronounced increase in the compression elasticity modulus and heat endurance of the composites takes place upon the combined incorporation of a porous filler and a salting-out electrolyte into the cryogel matrix. The microstructure of both unfilled and filled cryogels has been studied by scanning electron microscopy. Substantial changes have been revealed in the macroporous morphology of these objects upon the incorporation of a porous dispersed cellulose-containing filler or a salting-out electrolyte separately and, especially, upon their combined incorporation into the matrix of the PVA cryogel.



  1. 1.
    Lozinskii, V.I., Usp. Khim., 1998, vol. 67, p. 641.Google Scholar
  2. 2.
    Gutiérrez, M.C., Aranaz, I., Ferrer, M.L., and Del Monte, F., in Macroporous Polymers: Production, Properties and Biological/Biomedical Applications, Mattiasson, B., Kumar, A., and Galaev, I., Eds., Boca Raton: CRC, 2010, p. 83.Google Scholar
  3. 3.
    Gun’ko, V.M., Savina, I.N., and Mikhalovsky, S.V., Adv. Colloid Interface Sci., 2013, vols. 187–188, p. 1.Google Scholar
  4. 4.
    Lozinsky, V.I., Adv. Polym. Sci., 2014, vol. 263, p. 1.CrossRefGoogle Scholar
  5. 5.
    Karimi, A. and Daud, W.M.A.W., Polym. Compos., 2017, vol. 38, p. 1086.CrossRefGoogle Scholar
  6. 6.
    Lozinskii, V.I., Vakula, A.S., and Zubov, A.L., Biotekhnologiya, 1992, no. 4, p. 5.Google Scholar
  7. 7.
    Varfolomeev, S.D., Rainina, E.I., and Lozinsky, V.I., Pure Appl. Chem., 1992, vol. 64, p. 1193.CrossRefGoogle Scholar
  8. 8.
    Lozinsky, V.I. and Plieva, F.M., Enzyme Microb. Technol., 1998, vol. 23, p. 227.CrossRefGoogle Scholar
  9. 9.
    Prüsse, U., Morawsky, V., Dierish, A., Vaccaro, A., and Vorlop, K.-D., in Environmental Catalysis, Janssen, F.J.J.G. and Santen, R.A., Eds., London: Imperial College Press, 1999, p. 195.Google Scholar
  10. 10.
    Lozinsky, V.I., Plieva, F.M., Galaev, I.Yu., and Mattiasson, B., Bioseparation, 2001, vol. 10, p. 163.CrossRefGoogle Scholar
  11. 11.
    Lozinskii, V.I., Usp. Khim., 2002, vol. 71, p. 559.Google Scholar
  12. 12.
    Altunina, L.K., Kuvshinov, V.A., and Dolgikh, S.N., NATO Sci. Ser. IV, Earth Environ. Sci., 2006, vol. 65, p. 103.Google Scholar
  13. 13.
    Lozinskii, V.I., Izv. Akad. Nauk, Ser. Khim., 2008, p. 996.Google Scholar
  14. 14.
    Plieva, F.M., Galaev, I.Y., Noppe, W., and Mattiasson, B., Trends Microbiol., 2008, vol. 16, p. 543.CrossRefGoogle Scholar
  15. 15.
    Baker, M.I., Walsh, S.P., Schwartz, Z., and Boyan, B.D., J. Biomed. Mater. Res., Part B, 2012, vol. 100, p. 1451.Google Scholar
  16. 16.
    Mattiasson, B., Adv. Polym. Sci., 2014, vol. 263, p. 245.CrossRefGoogle Scholar
  17. 17.
    Izmailov, A.D. and Alekserova, L.E., Biokhimiya (Moscow), 2015, vol. 80, p. 867.Google Scholar
  18. 18.
    Vasiliev, N.K., Pronk, A.D.C., Shatalina, I.N., Janssen, F.H.M.E., and Houben, R.W.G., Cold Reg. Sci. Technol., 2015, vol. 115, p. 56.CrossRefGoogle Scholar
  19. 19.
    Butnaru, E., Cheaburu, C.N., Yilmaz, O., Pricope, G.M., and Vasile, C., High Perform. Polym., 2016, vol. 28, p. 1124.CrossRefGoogle Scholar
  20. 20.
    Timofejeva, A., D’Este, M., and Loca, D., Eur. Polym. J., 2017, vol. 95, p. 547.CrossRefGoogle Scholar
  21. 21.
    Bober, P., Trchová, M., Kovářová, J., Acharya, U., Hromádková, J., and Stejskal, J., Chem. Pap., 2018, vol. 72, p. 1619.CrossRefGoogle Scholar
  22. 22.
    Lozinsky, V.I., Zubov, A.L., Kulakova, V.K., Titova, E.F., and Rogozhin, S.V., J. Appl. Polym. Sci., 1992, vol. 44, p. 1423.CrossRefGoogle Scholar
  23. 23.
    Lozinsky, V.I., Zubov, A.L., and Titova, E.I., Enzyme Microb. Technol., 1997, vol. 20, p. 182.CrossRefGoogle Scholar
  24. 24.
    Chu, K.C., Jordan, K.J., Battista, J.J., Van Dyk, J., and Rutt, B.K., Phys. Med. Biol., 2000, vol. 45, p. 955.CrossRefGoogle Scholar
  25. 25.
    Lozinsky, V.I. and Damshkaln, L.G., J. Appl. Polym. Sci.,2001, vol. 82, p. 1609.CrossRefGoogle Scholar
  26. 26.
    Lozinsky, V.I. and Savina, I.N., Colloid J., 2002, vol. 64, p. 336.CrossRefGoogle Scholar
  27. 27.
    Savina, I.N. and Lozinsky, V.I., Colloid J., 2004, vol. 66, p. 343.CrossRefGoogle Scholar
  28. 28.
    Kanekio, T., Ogomi, D., Mitsugi, R., Serizawa, T., and Akashi, M., Chem. Mater., 2004, vol. 16, p. 5596.CrossRefGoogle Scholar
  29. 29.
    Lozinsky, V.I., Damshkaln, L.G., Kurochkin, I.N., and Kurochkin, I.I., Colloid J., 2005, vol. 67, p. 589.CrossRefGoogle Scholar
  30. 30.
    Millon, L.E. and Wan, V.K., J. Biomed. Mater. Res., Part B, 2006, vol. 79, p. 245.Google Scholar
  31. 31.
    Kuyukina, M.S., Ivshina, I.B., Gavrin, A.Yu., Podorozhko, E.A., Lozinsky, V.I., Jeffree, C.E., and Philp, J.C., J. Microbiol. Meth., 2006, vol. 65, p. 596.CrossRefGoogle Scholar
  32. 32.
    Altunina, L.K., Manzhai, V.N., Stas’eva, L.A., and Fufaeva, M.S., Russ. J. Appl. Chem., 2007, vol. 80, p. 1647.CrossRefGoogle Scholar
  33. 33.
    Podorozhko, E.A., Korlyukov, A.A., and Lozinsky, V.I., J. Appl. Polym. Sci., 2010, vol. 117, p. 1332.Google Scholar
  34. 34.
    Podorozhko, E.A., Vorontsova, T.V., and Lozinsky, V.I., Colloid J., 2012, vol. 74, p. 110.CrossRefGoogle Scholar
  35. 35.
    Podorozhko, E.A., D’yakonova, E.A., Kolosova, O.Yu., Klabukova, L.F., and Lozinsky, V.I., Colloid J., 2012, vol. 74, p. 708.CrossRefGoogle Scholar
  36. 36.
    Manzhai, V.N. and Fufaeva, M.S., Colloid J., 2014, vol. 76, p. 455.CrossRefGoogle Scholar
  37. 37.
    Guan, Y., Bian, J., Peng, F., Zhang, X.M., and Sun, R.C., Carbohydr. Res., 2014, vol. 101, p. 272.CrossRefGoogle Scholar
  38. 38.
    Podorozhko, E.A., D’yakonova, E.A., and Lozinsky, V.I., Colloid J., 2015, vol. 77, p. 46.CrossRefGoogle Scholar
  39. 39.
    Podorozhko, E.A., Lunev, I.A., Ryabev, A.N., Kil’deeva, N.R., and Lozinsky, V.I., Colloid J., 2015, vol. 77, p. 186.CrossRefGoogle Scholar
  40. 40.
    Iijima, M., Kosaka, S., Hatakeyama, T., and Hatakeyama, H., J. Therm. Anal. Calorim., 2016, vol. 123, p. 1809.CrossRefGoogle Scholar
  41. 41.
    Chen, J., Shi, X., Ren, L., and Wang, Y., Carbon, 2017, vol. 111, p. 18.CrossRefGoogle Scholar
  42. 42.
    Kolosova, O.Yu., Kurochkin, I.N., Kurochkin, I.I., and Lozinsky, V.I., Eur. Polym. J., 2018, vol. 102, p. 169.CrossRefGoogle Scholar
  43. 43.
    Lozinsky, V.I., Kolosova, O.Yu., Michurov, D.A., Dubovik, A.S., Vasil’ev, V.G., and Grinberg, V.Ya., Gels, 2018, vol. 4, Article 81.Google Scholar
  44. 44.
    Domotenko, L.V., Lozinskii, V.I., Vainerman, E.S., and Rogozhin, S.V., Vysokomol. Soedin., Ser. A, 1988, vol. 30, p. 1661.Google Scholar
  45. 45.
    Lozinsky, V.I., Damshkaln, L.G., Shaskol’skii, B.L., Babushkina, T.A., Kurochkin, I.N., and Kurochkin, I.I., Colloid J., 2007, vol. 69, p. 747.CrossRefGoogle Scholar
  46. 46.
    Marcus, Y., Chem. Rev., 2009, vol. 109, p. 1346.CrossRefGoogle Scholar
  47. 47.
    Lozinsky, V.I., Domotenko, L.V., Zubov, A.L., and Simenel, I.A., J. Appl. Polym. Sci., 1996, vol. 61, p. 1991.CrossRefGoogle Scholar
  48. 48.
    Patachia, S., Florea, C., Friedrich, Chr., and Thomann, Y., Express Polym. Lett., 2009, vol. 3, p. 320.CrossRefGoogle Scholar
  49. 49.
    Lozinsky, V.I., Sakhno, N.G., Damshkaln, L.G., Bakeeva, I.V., Zubov, V.P., Kurochkin, I.N., and Kurochkin, I.I., Colloid J., 2011, vol. 73, p. 234.CrossRefGoogle Scholar
  50. 50.
    Lozinsky, V.I., Zubov, A.L., Kulakova, V.K., Titova, E.F., and Rogozhin, S.V., J. Appl. Polym. Sci., 1992, vol. 44, p. 1423.CrossRefGoogle Scholar
  51. 51.
    Lozinsky, V.I., Zubov, A.L., and Titova, E.F., Enzyme Microb. Technol., 1997, vol. 20, p. 182.CrossRefGoogle Scholar
  52. 52.
    Lozinsky, V.I., Podorozhko, E.A., Nikitina, Ya.B., Klabukova, L.F., Vasil’ev, V.G., Burmistrov, A.A., Kondrashov, Yu.G., and Vasil’ev, N.K., Colloid J., 2017, vol. 79, p. 497.CrossRefGoogle Scholar
  53. 53.
    Askadskii, A.A., Lektsii po fiziko-khimii polimerov (Lectures on Polymer Physics and Chemistry), Moscow: Fiz. Fakul’tet MGU, 2001.Google Scholar
  54. 54.
    Lozinsky, V.I., Vainerman, E.S., Domotenko, L.V., Mamtsis, A.M., Titova, E.F., Belavtseva, E.M., and Rogozhin, S.V., Colloid Polym. Sci., 1986, vol. 264, p. 19.CrossRefGoogle Scholar
  55. 55.
    Voelkel, J., Polish J. Chem., 1981, vol. 55, p. 445.Google Scholar
  56. 56. html#r1567Google Scholar
  57. 57.
    Lipatov, Yu.S., in Entsiklopediya polimerov (Encyclopedia of Polymers), Moscow: Sovetskaya Entsiklopediya, 1974, vol. 2, p. 325.Google Scholar
  58. 58.
    Kudaibergenov, S.E., Ibraeva, Zh.E., Yashkarova, M.G., and Bekturov, E.A., Kompozitsionnye gidrogelevye materially (Hydrogel Composite Materials), Semei, Resp. Kazakhstan: Gos. Univ. im. Shakarima, 2011.Google Scholar
  59. 59.
    Lozinskii, V.I., Domotenko, L.V., Vainerman, E.S., and Rogozhin, S.V., Vysokomol. Soedin., Ser. A, 1989, vol. 31, p. 1805.Google Scholar
  60. 60.
    Papkov, S.P., Studneobraznoe sostoyanie polimerov (Gel-Like State of Polymers), Moscow: Khimiya, 1974.Google Scholar
  61. 61.
    Trieu, H.H. and Qutubuddin, S., Colloid Polym. Sci., 1994, vol. 272, p. 301.CrossRefGoogle Scholar
  62. 62.
    Willcox, P.J., Howie, D.W., Schmidt-Rohr, K., Hoagland, D.A., Gido, S.P., Pudjijanto, S., Kleiner, L.W., and Venkatraman, S., J. Polym. Sci., Part B: Polym. Phys., 1999, vol. 37, p. 3438.CrossRefGoogle Scholar
  63. 63.
    Voda i vodnye rastvory pri temperaturakh nizhe 0°C (Water and Aqueous Solutions at Temperatures Below 0°C), Franks, F., Ed., Kiev: Naukova Dumka, 1985.Google Scholar
  64. 64.
    Finnegan, W.G. and Pitter, R.L., J. Colloid Interface Sci., 1997, vol. 189, p. 322.CrossRefGoogle Scholar
  65. 65.
    Wang, S., Amornwittawat, N., Banatlao, J., Chung, M., Kao, Y., and Wen, X., J. Phys. Chem. B, 2009, vol. 113, p. 13 891.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. A. Podorozhko
    • 1
  • V. G. Vasil’ev
    • 1
  • N. K. Vasiliev
    • 2
  • V. I. Lozinsky
    • 1
    Email author
  1. 1.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of SciencesMoscowRussia
  2. 2.All-Russian Vedeneev Hydraulic Engineering Research InstituteSt. PetersburgRussia

Personalised recommendations