Colloid Journal

, Volume 80, Issue 6, pp 792–802 | Cite as

Osmosis in Negatively Charged Nanocapillaries and Its Enhancement by an Anionic Surfactant

  • Yu. Yamauchi
  • I. V. Blonskaya
  • P. Yu. ApelEmail author


Osmotic flows through track-etched membranes with pore radii of 10–50 nm have been measured in a water/membrane/salt solution system at a salt concentration on the order of several millimoles per liter. It has been found that water is intensely transported through the pores only when a solute dissociates into ions (KCl, K2SO4, sodium dodecyl sulfate, etc.). Molecules of low-molecular-mass nonelectrolytes induce actually no osmotic flows at these capillary radii, thereby indicating the key role of an electrical double layer in the mechanism of the osmotic transport. It has been shown that the transport through the pores under the action of the osmotic pressure is of a convective nature; i.e., the Poiseuille law for a viscous flow through a cylindrical capillary is fulfilled. The values of the osmotic pressure have been determined at different salt concentrations, and reflection coefficients have been calculated. The reflection coefficients correlate with the values of apparent diffusion coefficients of salts in nanopores, and these diffusion coefficients are markedly smaller than bulk values. The sorption of an anionic surfactant increases the membrane surface charge and enhances the osmotic effect.



We are grateful to O.L. Orelovitch and N.E. Lizunov for help in studying TMs by SEM.


  1. 1.
    Wijmans, J.G. and Baker, R.W., J. Membr. Sci., 1995, vol. 107, p. 1.CrossRefGoogle Scholar
  2. 2.
    Cath, T.Y., Childress, A.E., and Elimelech, M., J. Membr. Sci., 2006, vol. 281, p. 70.CrossRefGoogle Scholar
  3. 3.
    Mauro, A., Science (Washington, D. C.), 1957, vol. 126, p. 252.CrossRefGoogle Scholar
  4. 4.
    Anderson, J.L. and Malone, D.M., Biophys. J., 1974, vol. 14, p. 957.CrossRefGoogle Scholar
  5. 5.
    Marshall, E.A., J. Theor. Biol., 1977, vol. 66, p. 107.CrossRefGoogle Scholar
  6. 6.
    Thomas, S.R. and Mikulecky, D.C., Microvasc. Res., 1978, vol. 15, p. 207.CrossRefGoogle Scholar
  7. 7.
    Schultz, J.S., Valentine, R., and Choi, C.Y., J. Gen. Physiol., 1979, vol. 75, p. 49.CrossRefGoogle Scholar
  8. 8.
    Hill, A., Proc. R. Soc. London, 1989, vol. 237, p. 369.CrossRefGoogle Scholar
  9. 9.
    Hill, A., J. Membr. Biol., 1994, vol. 137, p. 197.CrossRefGoogle Scholar
  10. 10.
    Yaroshchuk, A.E., Adv. Colloid Interface Sci., 1995, vol. 60, p. 1.CrossRefGoogle Scholar
  11. 11.
    Guell, D.C. and Brenner, H., Ind. Eng. Chem. Res., 1996, vol. 35, p. 3004.CrossRefGoogle Scholar
  12. 12.
    Kramer, E.M. and Myers, D.R., Am. J. Phys., 2012, vol. 80, p. 694.CrossRefGoogle Scholar
  13. 13.
    Kramer, E.M. and Myers, D.R., Trends Plant Sci., 2013, vol. 18, p. 195.CrossRefGoogle Scholar
  14. 14.
    Zeman, L. and Wales, M., Sep. Sci. Technol., 1981, vol. 16, p. 275.CrossRefGoogle Scholar
  15. 15.
    Comper, W.D. and Williams, R.P.W., Biophys. Chem., 1990, vol. 36, p. 215.CrossRefGoogle Scholar
  16. 16.
    Apel, P.Y., Bashevoy, V.V., Blonskaya, I.V., Lizunov, N.E., Olejniczak, K., Orelovitch, O.L., and Trautmann, C., Phys. Chem. Chem. Phys., 2016, vol. 18, p. 25 421.CrossRefGoogle Scholar
  17. 17.
    Apel, P.Y., Blonskaya, I.V., Lizunov, N.E., Olejni-czak, K., Orelovitch, O.L., Tomil-Molares, M.E., and Trautmann, C., Small, 2018, vol. 14, p. 1 703 327.CrossRefGoogle Scholar
  18. 18.
    Apel, P.Yu., Korchev, Yu.E., Siwy, Z., Spohr, R., and Yoshida, M., Nucl. Instrum. Methods Phys. Res. B, 2001, vol. 184, p. 337.CrossRefGoogle Scholar
  19. 19.
    Gusinskii, G.M., Kremer, E.B., Kremer, M.I., and Mchedlishvili, B.V., Inzh.-Fiz. Zh., 1979, vol. 37, p. 1119.Google Scholar
  20. 20.
    Apel, P., Radiat. Meas., 2001, vol. 34, p. 559.CrossRefGoogle Scholar
  21. 21.
    Beck, R.E. and Schultz, J.S., Biochim. Biophys. Acta, 1972, vol. 255, p. 273.CrossRefGoogle Scholar
  22. 22.
    Encyclopedia of Membrane Science and Technology, Hoek, E.M.V. and Tarabara, V.V., Eds., New Jersey: Wiley, 2013, p. 332.Google Scholar
  23. 23.
    Schoenenberger, C., Van der Zande, B.M.I., Fokkink, L.G.J., Henny, M., Schmid, C., Krueger, M., Bachtold, A., Huber, R., Birk, H., and Staufer, U., J. Phys. Chem. B, 1997, vol. 101, p. 5497.CrossRefGoogle Scholar
  24. 24.
    Yamauchi, Yu., Blonskaya, I.V., and Apel’, P.Yu., Colloid J., 2017, vol. 79, p. 707.CrossRefGoogle Scholar
  25. 25.
    Plecis, A., Schoch, R.B., and Renaud, P., Nano Lett., 2005, vol. 5, p. 1147.CrossRefGoogle Scholar
  26. 26.
    Lück, H.B., Nucl. Instrum. Methods Phys. Res., 1983, vol. 213, p. 507.CrossRefGoogle Scholar
  27. 27.
    Apel, P.Yu. and Pretzsch, G., Nucl. Tracks Radiat. Meas., 1986, vol. 11, p. 45.CrossRefGoogle Scholar
  28. 28.
    Berezkin, V.V., Kiseleva, O.A., Nechaev, A.N., Sobolev, V.D., and Churaev, N.V., Kolloidn. Zh., 1994, vol. 56, p. 319.Google Scholar
  29. 29.
    Geissman, C. and Ulbricht, M., Macromol. Chem. Phys., 2005, vol. 206, p. 268.CrossRefGoogle Scholar
  30. 30.
    Dejardin, P., Vasina, E.N., Berezkin, V.V., Sobolev, V.D., and Volkov, V.I., Langmuir, 2005, vol. 21, p. 4680.CrossRefGoogle Scholar
  31. 31.
    Yaroshchuk, A.E., Zhukova, O., Ulbricht, M., and Ribitsch, V., Langmuir, 2005, vol. 21, p. 6872.CrossRefGoogle Scholar
  32. 32.
    Cervera, J., Alcaraz, A., Schiedt, B., Neumann, R., and Ramirez, P., J. Phys. Chem. C, 2007, vol. 111, p. 12 265.CrossRefGoogle Scholar
  33. 33.
    Xue, J., Xie, Y., Yan, Y., Ke, J., and Wang, Y., Biomicrofluidics, 2009, vol. 3, p. 022 408.CrossRefGoogle Scholar
  34. 34.
    Keesom, W.H., Zelenka, R.L., and Radtke, C.J., J. Colloid Interface Sci., 1988, vol. 123, p. 575.CrossRefGoogle Scholar
  35. 35.
    Sidorova, M.P., Ermakova, L.E., Savina, I.A., and Mchedlishvili, B.V., Kolloidn. Zh., 1990, vol. 52, p. 895.Google Scholar
  36. 36.
    Yamauchi, Yu. and Apel, P.Yu., Colloid J., 2017, vol. 79, p. 286.CrossRefGoogle Scholar
  37. 37.
    Ito, T. and Mizutani, Y., Jpn. Oil Chem. Soc., 1968, vol. 17, p. 246 (in Japanese).CrossRefGoogle Scholar
  38. 38.
    Berezkin, V.V., Nechaev, A.N., Fomichev, S.V., Mchedlishvili, B.V., and Zhitaryuk, N.I., Kolloidn. Zh., 1991, vol. 53, p. 339.Google Scholar
  39. 39.
    Yaroshchuk, A., Boiko, Y., and Makovetsky, A., Langmuir, 2009, vol. 25, p. 9605.CrossRefGoogle Scholar
  40. 40.
    Derjaguin, B.V., Churaev, N.V., and Muller, V.M., Surface Forces, New York: Consultants Bureau, 1987.CrossRefGoogle Scholar
  41. 41.
    Derjaguin, B.V., Koptelova, M.M., Muller, V.M., and Tikhomolova, K.P., Kolloidn. Zh., 1977, vol. 39, p. 1060.Google Scholar
  42. 42.
    Sasidhar, V. and Ruckenstein, E., J. Colloid Interface Sci., 1981, vol. 82, p. 439.CrossRefGoogle Scholar
  43. 43.
    Sasidhar, V. and Ruckenstein, E., J. Colloid Interface Sci., 1982, vol. 85, p. 332.CrossRefGoogle Scholar
  44. 44.
    Qian, S., Das, B., and Luo, X., J. Colloid Interface Sci., 2007, vol. 315, p. 721.CrossRefGoogle Scholar
  45. 45.
    Liu, K.-L., Hsu, J.-P., and Tseng, S., Langmuir, 2013, vol. 29, p. 9598.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Dubna State UniversityDubnaRussia

Personalised recommendations