Advertisement

Colloid Journal

, Volume 80, Issue 6, pp 771–782 | Cite as

Disruption of Polymer and Composite Microcapsule Shells under High-Intensity Focused Ultrasound

  • O. A. Inozemtseva
  • D. V. Voronin
  • A. V. Petrov
  • V. V. Petrov
  • S. A. Lapin
  • A. A. Kozlova
  • D. N. Bratashov
  • A. M. Zakharevich
  • D. A. GorinEmail author
Article

Abstract

A process has been described for obtaining polymer (polyelectrolyte) microcapsules and polyelectrolyte/magnetite composite microcapsules, as well as silica-based hybrid capsules via silane-type precursor hydrolysis, which gives rise to the formation of silica nanoparticles in the structures of shells containing different numbers of polymer layers. The polymer and nanocomposite microcapsules have been formed by successive adsorption of oppositely charged polyelectrolytes and/or nanoparticles on the surface of microparticles of vaterite, which is a polymorphous modification of calcium carbonate. The obtained shells of microcapsules of all types have been studied by atomic force microscopy, confocal fluorescence microscopy, and scanning electron microscopy before and after sonication. The effect of high-intensity focused ultrasound on the obtained samples of microcapsules has been investigated and the sonication parameters that ensure efficient disruption of their shells in an aqueous medium have been determined. It has been found that composite microcapsules containing magnetite nanoparticles in their shells are most sensitive to sonication. The obtained composite microcapsules are promising for developing new systems for delivery of biologically active substances and multifunctional coatings.

Notes

ACKNOWLEDGMENTS

We are grateful to the Simbioz Center for Collective use of the Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, for TEM examination of the obtained structures.

This work was supported by the Russian Foundation for Basic Research (project no. 18-29-08046) and the Ministry of Education and Science of the Russian Federation (projects nos. 11.8139.2017/P220 and 11.8289.2017/P220).

REFERENCES

  1. 1.
    Timin, A.S., Gao, H., Voronin, D.V., Gorin, D.A., and Sukhorukov, G.B., Adv. Mater. Interfaces, 2017, vol. 4, p. 1 600 338.CrossRefGoogle Scholar
  2. 2.
    Inozemtseva, O.A., Sal’kovskii, Yu.E., Severyukhina, A.N., Vidyasheva, I.V., Petrova, N.V., Metvalli, Kh.A., Stetsyura, I.Yu., and Gorin, D.A., Usp. Khim., 2015, vol. 84, p. 251.CrossRefGoogle Scholar
  3. 3.
    Decher, G., Science (Washington, D. C.), 1997, vol. 277, p. 1232.CrossRefGoogle Scholar
  4. 4.
    Decher, G. and Hong, J.D., Ber. Bunsen-Ges. Phys. Chem., 1991, vol. 95, p. 1430.CrossRefGoogle Scholar
  5. 5.
    Tong, W., Song, X., and Gao, C., Chem. Soc. Rev., 2012, vol. 41, p. 6103.CrossRefGoogle Scholar
  6. 6.
    Ariga, K., Lvov, Y.M., Kawakami, K., Ji, Q., and Hill, J.P., Adv. Drug Deliv. Rev., 2011, vol. 63, p. 762.CrossRefGoogle Scholar
  7. 7.
    Wuytens, P., Parakhonskiy, B., Yashchenok, A., Winterhalter, M., and Skirtach, A., Curr. Opin. Pharmacol., 2014, vol. 18, p. 129.CrossRefGoogle Scholar
  8. 8.
    Volodkin, D.V., Schmidt, S., Fernandes, P., Larionova, N.I., Sukhorukov, G.B., Duschl, C., Möhwald, H., and von Klitzing, R., Adv. Funct. Mater., 2012, vol. 22, p. 1914.CrossRefGoogle Scholar
  9. 9.
    Zhang, F., Wu, Q., Liu, L.-J., Chen, Z.-C., and Lin, X.-F., Int. J. Pharm., 2008, vol. 357, p. 22.CrossRefGoogle Scholar
  10. 10.
    Gao, C., Leporatti, S., Moya, S., Donath, E., and Möhwald, H., Chem.-A Eur. J., 2003, vol. 9, p. 915.CrossRefGoogle Scholar
  11. 11.
    Antipov, A.A., Sukhorukov, G.B., Leporatti, S., Radtchenko, I.L., Donath, E., and Möhwald, H., Colloids Surf. A, 2002, vols. 198–200, p. 535.Google Scholar
  12. 12.
    Kolesnikova, T.A., Khlebtsov, B.N., Shchukin, D.G., and Gorin, D.A., Nanotechnol. Russ., 2008, vol. 3, nos. 9–10, p. 560.Google Scholar
  13. 13.
    Kolesnikova, T.A., Skirtach, A.G., and Möhwald, H., Expert Opin. Drug Deliv., 2013, vol. 10, p. 47.CrossRefGoogle Scholar
  14. 14.
    Gao, H., Wen, D., and Sukhorukov, G.B., J. Mater. Chem. B, 2015, vol. 3, p. 1888.CrossRefGoogle Scholar
  15. 15.
    Gao, H., Goriacheva, O.A., Tarakina, N.V., and Sukhorukov, G.B., ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 9651.CrossRefGoogle Scholar
  16. 16.
    Ott, A., Yu, X., Hartmann, R., Rejman, J., Schütz, A., Ochs, M., Parak, W.J., and Carregal-Romero, S., Chem. Mater., 2015, vol. 27, p. 1929.CrossRefGoogle Scholar
  17. 17.
    Ochs, M., Carregal-Romero, S., Rejman, J., Braeckmans, K., De Smedt, S.C., and Parak, W.J., Angew. Chem., Int. Ed. Engl., 2013, vol. 52, p. 695.CrossRefGoogle Scholar
  18. 18.
    Caruso, F., Science (Washington, D. C.), 1998, vol. 282, p. 1111.CrossRefGoogle Scholar
  19. 19.
    Wu, Y., Frueh, J., Si, T., Möhwald, H., and He, Q., Phys. Chem. Chem. Phys., 2015, vol. 17, p. 3281.CrossRefGoogle Scholar
  20. 20.
    Yi, Q. and Sukhorukov, G.B., Adv. Colloid Interface Sci., 2014, vol. 207, p. 280.CrossRefGoogle Scholar
  21. 21.
    Gorin, D.A., Portnov, S.A., Inozemtseva, O.A., Luklinska, Z., Yashchenok, A.M., Pavlov, A.M., Skirtach, A.G., Möhwald, H., and Sukhorukov, G.B., Phys. Chem. Chem. Phys., 2008, vol. 10, p. 6899.CrossRefGoogle Scholar
  22. 22.
    Klyachko, N.L., Sokolsky-Papkov, M., Pothayee, N., Efremova, M.V., Gulin, D.A., Pothayee, N., Kuznetsov, A.A., Majouga, A.G., Riffle, J.S., Golovin, Y.I., and Kabanov, A.V., Angew. Chem., Int. Ed. Engl., 2012, vol. 51, p. 12 016.CrossRefGoogle Scholar
  23. 23.
    Ma, Y., Dong, W.-F., Hempenius, M.A., Möhwald, H., and Vancso, G.J., Nat. Mater., 2006, vol. 5, p. 724.CrossRefGoogle Scholar
  24. 24.
    Lomova, M.V., Brichkina, A.I., Kiryukhin, M.V., Vasina, E.N., Pavlov, A.M., Gorin, D.A., Sukhorukov, G.B., and Antipina, M.N., ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 11 732.CrossRefGoogle Scholar
  25. 25.
    Pitt, W.G., Husseini, G.A., and Staples, B.J., Expert Opin. Drug Deliv., 2004, vol. 1, p. 37.CrossRefGoogle Scholar
  26. 26.
    Sponer, J., Czech. J. Phys., 1990, vol. 40, p. 1123.CrossRefGoogle Scholar
  27. 27.
    De Geest, B.G., De Koker, S., Sukhorukov, G.B., Kreft, O., Parak, W.J., Skirtach, A.G., Demeester, J., De Smedt, S.C., and Hennink, W.E., Soft Matter, 2009, vol. 5, p. 282.CrossRefGoogle Scholar
  28. 28.
    Barnett, S.B., Ter, HaarG.R., Ziskin, M.C., Rott, H.-D., Duck, F.A., and Maeda, K., Ultrasound Med. Biol., 2000, vol. 26, p. 355.CrossRefGoogle Scholar
  29. 29.
    Mason, T.J., Cobley, A.J., Graves, J.E., and Morgan, D., Ultrason. Sonochem., 2011, vol. 18, p. 226.CrossRefGoogle Scholar
  30. 30.
    Graham, S.M., Carlisle, R., Choi, J.J., Stevenson, M., Shah, A.R., Myers, R.S., Fisher, K., Peregrino, M.-B., Seymour, L., and Coussios, C.C., J. Control. Release, 2014, vol. 178, p. 101.CrossRefGoogle Scholar
  31. 31.
    De Geest, B.G., Skirtach, A.G., Mamedov, A.A., Antipov, A.A., Kotov, N.A., De Smedt, S.C., and Sukhorukov, G.B., Small, 2007, vol. 3, p. 804.CrossRefGoogle Scholar
  32. 32.
    Pavlov, A.M., Saez, V., Cobley, A., Graves, J., Sukhorukov, G.B., and Mason, T.J., Soft Matter, 2011, vol. 7, p. 4341.CrossRefGoogle Scholar
  33. 33.
    Kolesnikova, T.A., Gorin, D.A., Fernandes, P., Kessel, S., Khomutov, G.B., Fery, A., Shchu-kin, D.G., and Möhwald, H., Adv. Funct. Mater., 2010, vol. 20, p. 1189.CrossRefGoogle Scholar
  34. 34.
    Shchukin, D.G., Gorin, D.A., and Möhwald, H., Langmuir, 2006, vol. 22, p. 7400.CrossRefGoogle Scholar
  35. 35.
    Rosnitskii, P.B., Gavrilov, L.R., Yuldashev, P.V., Sapozhnikov, O.A., and Khokhlova, V.A., Akust. Zh., 2017, vol. 5, p. 489.Google Scholar
  36. 36.
    Buravkov, S.V., Ponomarchuk, E.M., Khokhlova, T.D., Vang, Ya.N., and Khokhlova, V.A., Klin. Eksp. Morfol., 2017, vol. 3, p. 38.Google Scholar
  37. 37.
    Hijnen, N., Langereis, S., and Grüll, H., Adv. Drug Deliv. Rev., 2014, vol. 72, p. 65.CrossRefGoogle Scholar
  38. 38.
    Lovegrove, C., Nat. Clin. Pract. Oncol., 2006, vol. 3, p. 8.Google Scholar
  39. 39.
    Ma, M., Xu, H., Chen, H., Jia, X., Zhang, K., Wang, Q., Zheng, S., Wu, R., Yao, M., Cai, X., Li, F., and Shi, J., Adv. Mater. (Weinheim, Fed. Repub. Ger.), 2014, vol. 26, p. 7378.Google Scholar
  40. 40.
    Gai, M., Frueh, J., Tao, T., Petrov, A.V., Petrov, V.V., Shesterikov, E.V., Tverdokhlebov, S.I., and Sukhorukov, G.B., Nanoscale, 2017, vol. 9, p. 7063.CrossRefGoogle Scholar
  41. 41.
    German, S.V., Inozemtseva, O.A., Markin, A.V., Metvalli, Kh., Khomutov, G.B., and Gorin, D.A., Colloid J., 2013, vol. 75, p. 483.CrossRefGoogle Scholar
  42. 42.
    Svenskaya, Y.I., Pavlov, A.M., Gorin, D.A., Gould, D.J., Parakhonskiy, B.V., and Sukhorukov, G.B., Colloids Surf. B, 2016, vol. 146, p. 171.CrossRefGoogle Scholar
  43. 43.
    Donath, E., Sukhorukov, G.B., Caruso, F., Davis, S.A., and Möhwald, H., Angew. Chem., Int. Ed. Engl., 1998, vol. 37, p. 2201.CrossRefGoogle Scholar
  44. 44.
    Sukhorukov, G.B., Donath, E., Davis, S., Lichtenfeld, H., Caruso, F., Popov, V.I., and Möhwald, H., Polym. Adv. Technol., 1998, vol. 767, p. 759.CrossRefGoogle Scholar
  45. 45.
    Mazda, F.F., Electronic Instruments and Measurement Techniques, Cambridge: Cambridge Univ. Press, 1987.Google Scholar
  46. 46.
    Necas, D. and Klapetek, P., Open Phys., 2012, vol. 10, p. 181.CrossRefGoogle Scholar
  47. 47.
    Yashchenok, A.M., Inozemtseva, O.A., and Gorin, D.A., Nanotechnol. Russ., 2009, vol. 4, nos. 5–6, p. 349.Google Scholar
  48. 48.
    Andreeva, D.V., Gorin, D.A., Shchukin, D.G., and Sukhorukov, G.B., Macromol. Rapid Commun., 2006, vol. 27, p. 931.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • O. A. Inozemtseva
    • 1
  • D. V. Voronin
    • 1
  • A. V. Petrov
    • 1
  • V. V. Petrov
    • 1
  • S. A. Lapin
    • 1
  • A. A. Kozlova
    • 1
  • D. N. Bratashov
    • 1
  • A. M. Zakharevich
    • 1
  • D. A. Gorin
    • 2
    Email author
  1. 1.Chernyshevskii Saratov National Research State UniversitySaratovRussia
  2. 2.Skolkovo Institute of Science and TechnologyMoscowRussia

Personalised recommendations