Colloid Journal

, Volume 80, Issue 6, pp 761–770 | Cite as

Pretreatment of Celgard Matrices with Peroxycarbonic Acid for Subsequent Deposition of a Polydopamine Layer

  • N. A. Gvozdik
  • V. V. Zefirov
  • I. V. El’manovich
  • E. A. Karpushkin
  • K. J. Stevenson
  • V. G. Sergeyev
  • M. O. GallyamovEmail author


It has been shown that the pretreatment of Celgard polyolefin membranes in the presence of peroxycarbonic acid, which is formed upon saturation of a hydrogen peroxide solution with carbon dioxide under high pressure, improves the characteristics of composites that are obtained on their basis by depositing a polydopamine layer via oxidative polymerization. As compared with the initial matrices that have not been subjected to the pretreatment, the pretreated matrices with the deposited polydopamine layer advantageously combine better wettability with polar media and an increased ion transport selectivity imparted to them in combination with the preserved high ionic conductivity. This effect is achieved due to a decrease in the effective pore diameter. The revealed positive effect of the pretreatment may be related to the oxidative activity of peroxycarbonic acid, which gives rise to the formation of anchor functional groups on the matrix surface. Apparently, these groups facilitate subsequent uniform deposition of polydopamine in all matrix regions, including deep and fine pores due to the high pressure applied.



We are grateful to the Department of Structural Research of the Institute of Organic Chemistry, Russian Academy of Sciences, for the study of samples by electron microscopy.

This work was supported by the Russian Science Foundation, project no. 16-13-10338.


  1. 1.
    Arora, P. and Zhang, Z., Chem. Rev., 2004, vol. 104, p. 4419.CrossRefGoogle Scholar
  2. 2.
    Sarada, T., Sawyer, L.C., and Ostler, M.I., J. Membr. Sci., 1983, vol. 15, p. 97.CrossRefGoogle Scholar
  3. 3.
    Skyllas-Kazacos, M., Chakrabarti, M.H., Hajimola-na, S.A., Mjalli, F.S., and Saleem, M., J. Electrochem. Soc., 2011, vol. 158, p. R55.CrossRefGoogle Scholar
  4. 4.
    Weber, A.Z., Mench, M.M., Meyers, J.P., Ross, P.N., Gostick, J.T., and Liu, Q., J. Appl. Electrochem., 2011, vol. 41, p. 1137.CrossRefGoogle Scholar
  5. 5.
    Leung, P., Li, X., De León, C.P., Berlouis, L., Low, C.T.J., and Walsh, F.C., RSC Adv., 2012, vol. 2, p. 10 125.CrossRefGoogle Scholar
  6. 6.
    Alotto, P., Guarnieri, M., and Moro, F., Renew. Sustain. Energy Rev., 2014, vol. 29, p. 325.CrossRefGoogle Scholar
  7. 7.
    Soloveichik, G.L., Chem. Rev., 2015, vol. 115, p. 11 533.CrossRefGoogle Scholar
  8. 8.
    Shin, S.-H., Yun, S.-H., and Moon, S.-H., RSC Adv., 2013, vol. 3, p. 9095.CrossRefGoogle Scholar
  9. 9.
    Hudak, N.S., Small, L.J., Pratt, H.D., and Anderson, T.M., J. Electrochem. Soc., 2015, vol. 162, p. A2188.CrossRefGoogle Scholar
  10. 10.
    Li, C., Ward, A.L., Doris, S.E., Pascal, T.A., Prendergast, D., and Helms, B.A., Nano Lett., 2015, vol. 15, p. 5724.CrossRefGoogle Scholar
  11. 11.
    Bang, H.S., Kim, D., Hwang, S.S., and Won, J., J. Membr. Sci., 2016, vol. 514, p. 186.CrossRefGoogle Scholar
  12. 12.
    Cho, E. and Won, J., J. Power Sources, 2016, vol. 335, p. 12.CrossRefGoogle Scholar
  13. 13.
    Gong, S.-J., Kim, D., Cho, E., Hwang, S.S., and Won, J., Chem. Select., 2017, vol. 2, p. 1843.Google Scholar
  14. 14.
    Lee, H., Dellatore, S.M., Miller, W.M., and Messersmith, P.B., Science (Washington, D. C.), 2007, vol. 318, p. 426.CrossRefGoogle Scholar
  15. 15.
    Dreyer, D.R., Miller, D.J., Freeman, B.D., Paul, D.R., and Bielawski, C.W., Chem. Sci., 2013, vol. 4, p. 3796.CrossRefGoogle Scholar
  16. 16.
    Liu, Y., Ai, K., and Lu, L., Chem. Rev., 2014, vol. 114, p. 5057.CrossRefGoogle Scholar
  17. 17.
    Barclay, T.G., Hegab, H.M., Clarke, S.R., and Ginic-Markovic, M., Adv. Mater. Interfaces, 2017, vol. 4, p. 1 601 192.CrossRefGoogle Scholar
  18. 18.
    Ryu, J.H., Messersmith, P.B., and Lee, H., ACS Appl. Mater. Interfaces, 2018, vol. 10, p. 7523.CrossRefGoogle Scholar
  19. 19.
    Son, E.J., Kim, J.H., Kim, K., and Park, C.B., J. Mater. Chem. A, 2016, vol. 4, p. 11 179.CrossRefGoogle Scholar
  20. 20.
    Jeong, Y.K., Park, S.H., and Choi, J.W., ACS Appl. Mater. Interfaces, 2018, vol. 10, p. 7562.CrossRefGoogle Scholar
  21. 21.
    Yang, H.-C., Luo, J., Li, Y., Shen, P., and Xu, Z.-K., J. Membr. Sci., 2015, vol. 483, p. 42.CrossRefGoogle Scholar
  22. 22.
    Yang, H.-C., Hou, J., Chen, V., and Xu, Z.-K., J. Mater. Chem. A, 2016, vol. 4, p. 9716.CrossRefGoogle Scholar
  23. 23.
    Yang, H.-C., Waldman, R.Z., Wu, M.-B., Hou, J., Chen, L., Darling, S.B., and Xu, Z.-K., Adv. Funct. Mater., 2018, vol. 28, p. 1 705 327.CrossRefGoogle Scholar
  24. 24.
    Lee, H.J. and Kim, H., J. Electrochem. Soc., 2015, vol. 162, p. A1675.CrossRefGoogle Scholar
  25. 25.
    Yin, X.-N., Wang, J., Zhou, J.-J., and Li, L., Chin. J. Polym. Sci., 2015, vol. 33, p. 1721.CrossRefGoogle Scholar
  26. 26.
    Wang, J., Bai, H., Zhang, H., Zhao, L., Chen, H., and Li, Y., Electrochim. Acta, 2015, vol. 152, p. 443.CrossRefGoogle Scholar
  27. 27.
    Zhang, H., He, Y., Zhang, J., Ma, L., Li, Y., and Wang, J., J. Membr. Sci., 2016, vol. 505, p. 108.CrossRefGoogle Scholar
  28. 28.
    Zhang, B., Cao, Y., Jiang, S., Li, Z., He, G., and Wu, H., J. Membr. Sci., 2016, vol. 518, p. 243.CrossRefGoogle Scholar
  29. 29.
    Kang, S.M., Ryou, M.-H., Choi, J.W., and Lee, H., Chem. Mater., 2012, vol. 24, p. 3481.CrossRefGoogle Scholar
  30. 30.
    Dai, J., Shi, C., Li, C., Shen, X., Peng, L., Wu, D., Sun, D., Zhang, P., and Zhao, J., Energy Environ. Sci., 2016, vol. 9, p. 3252.CrossRefGoogle Scholar
  31. 31.
    Luo, Z., Gong, Y., Liao, X., Pan, Y., and Zhang, H., RSC Adv., 2016, vol. 6, p. 13 618.CrossRefGoogle Scholar
  32. 32.
    Pi, J.-K., Wu, G.-P., Yang, H.-C., Arges, C.G., and Xu, Z.-K., ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 21 971.CrossRefGoogle Scholar
  33. 33.
    Yu, L., Lin, F., Xiao, W., Luo, D., and Xi, J., J. Membr. Sci., 2018, vol. 549, p. 411.CrossRefGoogle Scholar
  34. 34.
    Sureshkumar, M., Lee, P.-N., and Lee, C.-K., RSC Adv., 2012, vol. 2, p. 5127.CrossRefGoogle Scholar
  35. 35.
    Xu, Q., Kong, Q., Liu, Z., Zhang, J., Wang, X., Liu, R., Yue, L., and Cui, G., RSC Adv., 2014, vol. 4, p. 7845.CrossRefGoogle Scholar
  36. 36.
    Xi, J., Dai, W., and Yu, L., RSC Adv., 2015, vol. 5, p. 33 400.CrossRefGoogle Scholar
  37. 37.
    Zhang, Z., Zhang, Z., Li, J., and Lai, Y., J. Solid State Electrochem., 2015, vol. 19, p. 1709.CrossRefGoogle Scholar
  38. 38.
    Shi, C., Dai, J., Huang, S., Li, C., Shen, X., Zhang, P., Wu, D., Sun, D., and Zhao, J., J. Membr. Sci., 2016, vol. 518, p. 168.CrossRefGoogle Scholar
  39. 39.
    Shi, C., Dai, J., Li, C., Shen, X., Peng, L., Zhang, P., Wu, D., Sun, D., and Zhao, J., Polymers, 2017, vol. 9, p. 159.CrossRefGoogle Scholar
  40. 40.
    Wei, Q., Zhang, F., Li, J., Li, B., and Zhao, C., Polym. Chem., 2010, vol. 1, p. 1430.CrossRefGoogle Scholar
  41. 41.
    Jiang, J., Zhu, L., Zhu, L., Zhu, B., and Xu, Y., Langmuir, 2011, vol. 27, p. 14 180.CrossRefGoogle Scholar
  42. 42.
    Ryou, M.-H., Lee, Y.M., Park, J.-K., and Choi, J.W., Adv. Mater. (Weinheim, Fed. Repub. Ger.), 2011, vol. 23, p. 3066.Google Scholar
  43. 43.
    Oh, K.-H., Choo, M.-J., Lee, H., Park, K.H., Park, J.-K., and Choi, J.W., J. Mater. Chem. A, 2013, vol. 1, p. 14 484.CrossRefGoogle Scholar
  44. 44.
    Lee, Y., Ryou, M.-H., Seo, M., Choi, J.W., and Lee, Y.M., Electrochim. Acta, 2013, vol. 113, p. 433.CrossRefGoogle Scholar
  45. 45.
    Xie, M., Wang, J., Wang, X., Yin, M., Wang, C., Chao, D., and Liu, X., Macromol. Res., 2016, vol. 24, p. 965.CrossRefGoogle Scholar
  46. 46.
    Ma, H., Gao, P., Zhang, Y., Fan, D., Li, G., Du, B., and Wei, Q., RSC Adv., 2013, vol. 3, p. 25 291.CrossRefGoogle Scholar
  47. 47.
    Cao, C., Tan, L., Liu, W., Ma, J. and Li, L., J. Power Sources, 2014, vol. 248, p. 224.CrossRefGoogle Scholar
  48. 48.
    Wang, D., Zhao, Z., Yu, L., Zhang, K., Na, H., Ying, S., Xu, D., and Zhang, G., J. Appl. Polym. Sci., 2014, vol. 131, p. 40 543.CrossRefGoogle Scholar
  49. 49.
    Chao, C.-Y., Feng, Y.-F., Hua, K., Li, H., Wu, L.-J., Zhou, Y.-S., and Dong, Z.-W., J. Appl. Polym. Sci., 2018, vol. 135, p. 46 478.CrossRefGoogle Scholar
  50. 50.
    Fang, L.-F., Shi, J.-L., Jiang, J.-H., Li, H., Zhu, B.-K., and Zhu, L.-P., RSC Adv., 2014, vol. 4, p. 22 501.CrossRefGoogle Scholar
  51. 51.
    Thakur, V.K., Vennerberg, D., and Kessler, M.R., ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 9349.CrossRefGoogle Scholar
  52. 52.
    Pigaleva, M.A., Elmanovich, I.V., Kononevich, Y.N., Gallyamov, M.O., and Muzafarov, A.M., RSC Adv., 2015, vol. 5, p. 103 573.CrossRefGoogle Scholar
  53. 53.
    Zefirov, V.V., Lyubimtsev, N.A., Stakhanov, A.I., El’manovich, I.V., Kondratenko, M.S., and Gallyamov, M.O., Territorija NEFTEGAZ, 2018, no. 4, p. 38.Google Scholar
  54. 54.
    Stalder, A.F., Melchior, T., Muller, M., Sage, D., Blu, T., and Unser, M., Colloids Surf. A, 2010, vol. 364 P, p. 72.Google Scholar
  55. 55.
    Halim, J., Büchi, F.N., Haas, O., Stamm, M., and Scherer, G.G., Electrochim. Acta, 1994, vol. 39, p. 1303.CrossRefGoogle Scholar
  56. 56.
    Karpushkin, E.A., Gvozdik, N.A., Levitskiya, O.A., Sergeyev, V.G., and Magdesieva, T.V., Colloid Polym. Sci. (in press).Google Scholar
  57. 57.
    Sizov, V.E., Kondratenko, M.S., and Gallya-mov, M.O., J. Appl. Polym. Sci., 2018, vol. 135, p. 46 262.CrossRefGoogle Scholar
  58. 58.
    Sizov, V.E., Kondratenko, M.S., Gallyamov, M.O., and Stevenson, K.J., J. Supercrit. Fluids, 2018, vol. 137, p. 111.CrossRefGoogle Scholar
  59. 59.
    Kachala, V.V., Khemchyan, L.L., Kashin, A.S., Orlov, N.V., Grachev, A.A., Zalesskii, S.S., and Ananikov, V.P., Usp. Khim., 2013, vol. 82, p. 648.CrossRefGoogle Scholar
  60. 60.
    Kashin, A.S. and Ananikov, V.P., Izv. Akad. Nauk, Ser. Khim., 2011, p. 2551.Google Scholar
  61. 61.
    Hong, S., Na, Y.S., Choi, S., Song, I.T., Kim, W.Y., and Lee, H., Adv. Funct. Mater., 2012, vol. 22, p. 4711.CrossRefGoogle Scholar
  62. 62.
    Andreeva, A.S., Gallyamov, M.O., Pyshkina, O.A., Sergeev, V.G., and Yaminskii, I.V., Russ. J. Phys. Chem., 1999, vol. 73, p. 1858.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • N. A. Gvozdik
    • 1
  • V. V. Zefirov
    • 2
  • I. V. El’manovich
    • 2
    • 3
  • E. A. Karpushkin
    • 4
  • K. J. Stevenson
    • 1
    • 4
  • V. G. Sergeyev
    • 4
  • M. O. Gallyamov
    • 2
    • 3
    Email author
  1. 1.Center for Electrochemical Energy Storage, Skolkovo Institute of Science and TechnologyMoscowRussia
  2. 2.Faculty of Physics, Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of SciencesMoscowRussia
  4. 4.Faculty of Chemistry, Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations