Advertisement

Colloid Journal

, Volume 80, Issue 6, pp 710–715 | Cite as

Thermo-Induced Shrinking of “Dextran Sulfate/Polyarginine” Capsules with Magnetic Nanoparticles in the Shell

  • D. B. TrushinaEmail author
  • A. S. Burova
  • T. N. Borodina
  • M. A. Soldatov
  • T. Yu. Klochko
  • T. V. Bukreeva
Article

Abstract

Polyelectrolyte capsules consisting of a combination of biodegradable polyelectrolytes, dextran sulfate/polyarginine, and magnetic nanoparticles have been prepared. The possibility of changing the sizes and morphology of the capsules by heating their aqueous suspension has been investigated. The efficiency of capsule shrinking doesn’t change when a layer of magnetic nanoparticles is introduced into the shell. The nanoparticles are uniformly distributed in the shell and do not aggregate during the process of its rearrangement under the influence of temperature.

Notes

ACKNOWLEDGMENTS

We are grateful to V.V. Artemov and D.N. Khmelenin for studying the samples by scanning and transmission electron microscopy.

The work was performed using the equipment of the Shared Research Center FSRC “Crystallography and Photonics” of the Russian Academy of Sciences and partly supported by the Ministry of Science and Higher Education within the State assignment FSRC “Crystallography and Photonics” RAS in the field of capsule preparation. D.B. Trushina is grateful to the Russian Foundation for Basic Research and the Foundation for Support of Scientific and Project Activities of Students, graduate students and young scientists “National intellectual development” and Design Activity of Students and Young Scientists, project no. 17-33-80141 mol_ev_а in part of the study of the temperature effect on the morphology and size of capsules with nanoparticles in the shell. Modification of the capsules with nanoparticles was performed with the support of the National Research Center Kurchatov Institute.

D.B. Trushina, А.S. Burova, and Т.N. Borodina have made equal contributions to this work.

REFERENCES

  1. 1.
    Martinho, N., J. Biomater. Nanobiotechnol., 2011, vol. 2, no. 5, p. 510.CrossRefGoogle Scholar
  2. 2.
    Donath, E., Sukhorukov, G.B., Caruso, F., et al., Angew. Chem., Int. Ed. Engl., 1998, vol. 37, p. 2201.CrossRefGoogle Scholar
  3. 3.
    Sukhorukov, G.B., Donath, E., Lichtenfeld, H., et al., Colloids Surf. A, 1998, vol. 137, p. 253.CrossRefGoogle Scholar
  4. 4.
    Sergeeva, A.S., Gorin, D.A., and Volodkin, D.V., Bionanoscience, 2014, vol. 4, no. 1, p. 1.CrossRefGoogle Scholar
  5. 5.
    Antipina, M.N., Kiryukhin, M.V., Skirtach, A.G., et al., Int. Mater. Rev., 2014, vol. 59, p. 224.CrossRefGoogle Scholar
  6. 6.
    Sukhorukov, G.B., Volodkin, D.V., Günther, A.M., et al., J. Mater. Chem., 2004, vol. 14, p. 2073.CrossRefGoogle Scholar
  7. 7.
    Hu, S., Tsai, C.-H., Liao, C.-F., et al., Langmuir, 2008, vol. 24, p. 11811.CrossRefGoogle Scholar
  8. 8.
    Bukreeva, T.V., Parakhonskii, B.V., Marchenko, I.V., et al., Nanotechnol. Russ., 2008, vol. 3, no. 1, p. 85.Google Scholar
  9. 9.
    Voronin, D.V., Sindeeva, O.A., Kurochkin, M.A., et al., ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 6885.CrossRefGoogle Scholar
  10. 10.
    Katagiri, K., Nakamura, M., and Koumoto, K., ACS Appl. Mater. Interfaces, 2010, vol. 2, p. 768.CrossRefGoogle Scholar
  11. 11.
    Gil, P.R., Del Mercato, L.L., Del Pino, P., et al., Nano Today, 2008, vol. 3, nos. 3–4, p. 12.Google Scholar
  12. 12.
    Golovin, Y.I., Gribanovsky, S.L., Golovin, D.Y., et al., J. Control. Release, 2015, vol. 219, p. 43.CrossRefGoogle Scholar
  13. 13.
    De Koker, S., De Geest, B.G., Singh, S.K., et al., Angew. Chem., 2009, vol. 121, p. 8637.CrossRefGoogle Scholar
  14. 14.
    Liu, W., Wang, X., Bai, K., et al., J. R. Soc. Interface, 2014, vol. 11, p. 20141027.CrossRefGoogle Scholar
  15. 15.
    Ye, S., Wang, C., Liu, X., et al., J. Biomater. Sci., Polym. Ed., 2005, vol. 16, p. 909.CrossRefGoogle Scholar
  16. 16.
    Itoh, Y., Matsusaki, M., Kida, T., et al., Chem. Lett., 2004, vol. 33, p. 1552.CrossRefGoogle Scholar
  17. 17.
    Trushina, D.B., Bukreeva, T.V., and Antipina, M.N., Cryst. Growth Des., 2016, vol. 16, p. 1311.CrossRefGoogle Scholar
  18. 18.
    Köhler, K., Shchukin, D.G., Möhwald, H., et al., J. Phys. Chem. B, 2005, vol. 109, p. 18250.CrossRefGoogle Scholar
  19. 19.
    Trushina, D.B., Bukreeva, T.V., and Borodina, T.N., Colloids Surf. B, 2018 (in press).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • D. B. Trushina
    • 1
    • 2
    • 3
    Email author
  • A. S. Burova
    • 3
    • 4
  • T. N. Borodina
    • 2
    • 3
  • M. A. Soldatov
    • 5
  • T. Yu. Klochko
    • 5
  • T. V. Bukreeva
    • 1
    • 3
  1. 1.National Research Center Kurchatov InstituteMoscowRussia
  2. 2.Sechenov First Moscow State Medical University, Ministry of Health of the Russian FederationMoscowRussia
  3. 3.Shubnikov Institute of Crystallography, Federal Scientific Research Center Crystallography and Photonics, Russian Academy of SciencesMoscowRussia
  4. 4.Lomonosov Moscow State UniversityMoscowRussia
  5. 5.Southern Federal University, International Research Center “Smart Materials”Rostov-on-DonRussia

Personalised recommendations