Colloid Journal

, Volume 80, Issue 6, pp 698–702 | Cite as

The Effect of a Cationic Polyelectrolyte on the Electrokinetic Properties of a Nanofiltration Membrane and Retention of Ions by It

  • K. G. SabbatovskiiEmail author
  • I. P. Sergeeva
  • V. D. Sobolev


Electrokinetic properties of an asymmetric nanofiltration membrane modified with a cationic polyelectrolyte (styrene–dimethylaminopropylmaleimide copolymer) and the selectivity of the membrane with respect to solutions of differently charged electrolytes have been studied. The modification has been carried out by filtering the polyelectrolyte from the side of the selective layer and the opposite side of the membrane. It has been found that the membrane selectivity to sodium sulfate and magnesium chloride solutions increases with polyelectrolyte concentration in the solution used for membrane modification from the side of the selective layer. A decreased selectivity to sodium sulfate and an unchanged selectivity to magnesium chloride have been observed for the membrane modified from the substrate side.



  1. 1.
    Lyklema, J. and Deschenes, L., Adv. Colloid Interface Sci., 2011, vol. 168, p. 135.CrossRefGoogle Scholar
  2. 2.
    Dobrynin, A.V. and Rubinstein, M., Prog. Polym. Sci., 2005, vol. 3, p. 1049.CrossRefGoogle Scholar
  3. 3.
    Szilagui, I., Trefalt, G., Tirraferri, A., Maroni, P., and Borkovec, M., Soft Matter, 2014, vol. 10, p. 2479.CrossRefGoogle Scholar
  4. 4.
    Schlenoff, J.B. and Dubas, S.T., Macromolecules, 2001, vol. 34, p. 592.CrossRefGoogle Scholar
  5. 5.
    Malaisamy, R., Talla-Nwafo, A., and Jones, K.L., Sep. Purif. Technol., 2011, vol. 77, p. 367.CrossRefGoogle Scholar
  6. 6.
    Magnenet, C., Jurin, F.E., Lakard, S., Buron, C.C., and Lakard, B., Colloids Surf. A, 2013, vol. 435, p. 170.CrossRefGoogle Scholar
  7. 7.
    Mokhter, M.A., Lakard, S., Magnenet, C., Euvrard, M., and Lakard, B., Environ. Technol., 2017, vol. 38, p. 2476.CrossRefGoogle Scholar
  8. 8.
    Sabbatovskii, K.G., Sobolev, V.D., and Churaev, N.V., Kolloidn. Zh., 1991, vol. 53, p. 74.Google Scholar
  9. 9.
    Shmid, G., Z. Elektrochem. Angew. Phys. Chem., 1950, vol. 54, p. 424.Google Scholar
  10. 10.
    Sabbatovskii, K.G., Sobolev, V.D., and Churaev, N.V., Kolloidn. Zh., 1991, vol. 53, p. 403.Google Scholar
  11. 11.
    Sabbatovskii, K.G., Sobolev, V.D., and Churaev, N.V., Kolloidn. Zh., 1994, vol. 56, p. 567.Google Scholar
  12. 12.
    Donnan, F.G., Chem. Rev., 1925, vol. 1, p. 73.CrossRefGoogle Scholar
  13. 13.
    Donnan, F.G. and Guggenheim, E.A., Z. Phys. Chem., 1932, vol. 162, p. 346.Google Scholar
  14. 14.
    Sabbatovskii, K.G., Sobolev, V.D., and Churaev, N.V., Colloid J., 1996, vol. 58, p. 636.Google Scholar
  15. 15.
    Sabbatovskii, K.G., Colloid J., 2002, vol. 64, p. 101.CrossRefGoogle Scholar
  16. 16.
    Sabbatovskii, K.G., Colloid J., 2003, vol. 65, p. 237.CrossRefGoogle Scholar
  17. 17.
    Ermakova, T.B., Sergeeva, I.P., Anuchkina, A.D., Sobolev, V.D., and Churaev, N.V., Prog. Colloid Polym. Sci., 2006, vol. 132, p. 95.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • K. G. Sabbatovskii
    • 1
    Email author
  • I. P. Sergeeva
    • 1
  • V. D. Sobolev
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations