Layer-by-Layer Assembly of Metal-Organic Frameworks Based on Carboxylated Perylene on Template Monolayers of Graphene Oxide
Abstract
The development of approaches to the integration of metal-organic frameworks (MOFs) with solid substrates is an urgent problem of the physical chemistry of thin films, whose solution will provide the compatibility of MOFs with modern planar technologies. It has been shown that it is possible to implement the layer-by-layer assembly of a coordination structure based on N,N'-di(propanoic acid)-perylene-3,4,9,10-tetracarboxylic diimide as an organic linker and zinc acetate as a binding metal cluster on the substrates coated with monolayers of graphene oxide particles. According to absorption spectroscopy and X-ray diffraction data, the two-dimensional geometry of the template carbon layer provides the uniform growth of a crystalline coordination structure on the solid substrate. The retention of the fluorescence intensity of the perylene linker in this structure indicates that its molecules are not aggregated via the π–π stacking mechanism. The scanning electron microscopy data have shown that the films have a uniform micromorphology. The obtained results confirm the applicability of graphene oxide monolayers as universal functional coatings, which provide the attachment and uniform growth of MOF films on diverse solid substrates.
Notes
ACKNOWLEDGMENTS
This work was supported by the Russian Science Foundation, project no. 16-13-10512. The X-ray studies were performed at the Center of Collective Use of the Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences.
REFERENCES
- 1.James, S.L., Chem. Soc. Rev., 2003, vol. 32, p. 276.Google Scholar
- 2.Farha, O.K. and Hupp, J.T., Acc. Chem. Res., 2010, vol. 43, p. 1166.Google Scholar
- 3.Furukawa, H., Ko, N., Go, Y.B., Aratani, N., Choi, S.B., Choi, E., Yazaydin, A.O., Snurr, R.Q., O’Keeffe, M., Kim, J., and Yaghi, O.M., Science (Washington, D. C.), 2010, vol. 329, p. 424.Google Scholar
- 4.Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebrie, C., Baati, T., Eubank, J.F., Heurtaux, D., Clayette, P., Kreuz, C., Chang, J.-S., Hwang, Y.K., Marsaud, V., Bories, P.-N., Cynober, L., Gil, S., Ferey, G., Couvreur, P., and Gref, R., Nat. Mater., 2010, vol. 9, p. 172.Google Scholar
- 5.Flaig, R.W., Osborn, Popp, T.M., Fracaroli, A.M., Kapustin, E.A., Kalmutzki, M.J., Altamimi, R.M., Fathieh, F., Reimer, J.A., and Yaghi, O.M., J. Am. Chem. Soc., 2017, vol. 139, p. 12125.Google Scholar
- 6.Li, J.-R., Sculley, J., and Zhou, H.-C., Chem. Rev., 2012, vol. 112, p. 869.Google Scholar
- 7.Trickett, C.A., Helal, A., Al-Maythalony, B.A., Yamani, Z.H., Cordova, K.E., and Yaghi, O.M., Nat. Rev. Mater., 2017, vol. 2, p. 17045.Google Scholar
- 8.Peng, Y., Li, Y., Ban, Y., Jin, H., Jiao, W., Liu, X., and Yang, W., Science (Washington, D. C.), 2014, vol. 346, p. 1356.Google Scholar
- 9.Kreno, L.E., Leong, K., Farha, O.K., Allendorf, M., Van Duyne, R.P., and Hupp, J.T., Chem. Rev., 2012, vol. 112, p. 1105.Google Scholar
- 10.Corma, A., García, H., Llabrés, I., and Xamena, F.X., Chem. Rev., 2010, vol. 110, p. 4606.Google Scholar
- 11.Zhu, J., Maza, W.A., and Morris, A.J., J. Photochem. Photobiol. A, 2017, vol. 344, p. 64.Google Scholar
- 12.Zhang, C., Li, X., Kang, S., Qin, L., Li, G., and Mu, J., Chem. Commun., 2014, vol. 50, p. 9064.Google Scholar
- 13.Laokroekkiat, S., Hara, M., Nagano, S., and Nagao, Y., Langmuir, 2016, vol. 32, p. 6648.Google Scholar
- 14.So, M.C., Jin, S., Son, H.-J., Wiederrecht, G.P., Farha, O.K., and Hupp, J.T., J. Am. Chem. Soc., 2013, vol. 135, p. 15698.Google Scholar
- 15.Zacher, D., Yusenko, K., Betard, A., Henke, S., Molon, M., Ladnorg, T., Shekhah, O., Schüpbach, B., Arcos, T., Krasnopolski, M., Meilikhov, M., Winter, J., Terfort, A., Wöll, C., and Fischer, R.A., Chem.-Eur. J., 2011, vol. 17, p. 1448.Google Scholar
- 16.Zhuang, J.-L., Kind, M., Grytz, C.M., Farr, F., Diefenbach, M., Tussupbayev, S., Holthausen, M.C., and Terfort, A., J. Am. Chem. Soc., 2015, vol. 137, p. 8237.Google Scholar
- 17.Kim, D. and Coskun, A., CrystEngComm, 2016, vol. 18, p. 4013.Google Scholar
- 18.Meshkov, I.N., Zvyagina, A.I., Shiryaev, A.A., Nickolsky, M.S., Baranchikov, A.E., Ezhov, A.A., Nugmanova, A.G., Enakieva, Y.Y., Gorbunova, Y.G., Arslanov, V.V., and Kalinina, M.A., Langmuir, 2018, vol. 34, p. 5184.Google Scholar
- 19.Zvyagina, A.I., Shiryaev, A.A., Baranchikov, A.E., Chernyshev, V.V., Enakieva, Y.Y., Raitman, O.A., Ezhov, A.A., Meshkov, I.N., Grishanov, D.A., Ivanova, O.S., Gorbunova, Y.G., Arslanov, V.V., and Kalinina, M.A., New J. Chem., 2017, vol. 41, p. 948.Google Scholar
- 20.Kasha, M., Rawls, H.R., and El-Bayoumi, A.M., Pure Appl. Chem., 1965, vol. 11, p. 371.Google Scholar
- 21.Datar, A., Balakrishnan, K., and Zang, L., Chem. Commun., 2013, vol. 49, p. 6894.Google Scholar
- 22.Li, X.-Q., Stepanenko, V., Chen, Z., Prins, P., Siebbeles, L.D.A., and Wurthner, F., Chem. Commun., 2006, p. 3871.Google Scholar
- 23.Kozma, E. and Catellani, M., Dyes Pigments, 2013, vol. 98, p. 160.Google Scholar
- 24.Hariharan, P.S., Pitchaimani, J., Madhu, V., and Anthony, S.P., Opt. Mater., 2017, vol. 64, p. 53.Google Scholar
- 25.Sun, Z., Feng, T., and Russell, T.P., Langmuir, 2013, vol. 29, p. 13407.Google Scholar
- 26.Tang, Z., Zhuang, J., and Wang, X., Langmuir, 2010, vol. 26, p. 9045.Google Scholar
- 27.Chen, F., Liu, S., Shen, J., Wei, L., Liu, A., Chan-Park, M.B., and Chen, Y., Langmuir, 2011, vol. 27, p. 9174.Google Scholar
- 28.Zvyagina, A.I., Melnikova, E.K., Averin, A.A., Baranchikov, A.E., Tameev, A.R., Malov, V.V., Ezhov, A.A., Grishanov, D.A., Gun, J., Ermakova, E.V., Arslanov, V.V., and Kalinina, M.A., Carbon, 2018, vol. 134, p. 62.Google Scholar
- 29.Biswas, S. and Drzal, L.T., Nano Lett., 2009, vol. 9, p. 167.Google Scholar
- 30.Gudarzi, M.M. and Sharif, F., Soft Matter, 2011, vol. 7, p. 3432.Google Scholar
- 31.Shahriary, L. and Athawale, A.A., Int. J. Renew. Energy Environ. Eng., 2014, vol. 2, p. 58.Google Scholar
- 32.Akimoto, S., Ohmori, A., and Yamazaki, I., J. Phys. Chem. B, 1997, vol. 101, p. 3753.Google Scholar
- 33.Wang, J., Shi, W., Liu, D., Zhang, Z.J., Zhu, Y., and Wang, D., Appl. Catal. B, 2017, vol. 202, p. 289.Google Scholar
- 34.Barron, P.M., Wray, C.A., Hu, C., Guo, Z., and Choe, W., Inorg. Chem., 2010, vol. 49, p. 10217.Google Scholar
- 35.Shmilovits, M., Vinodu, M., and Goldberg, I., Cryst. Growth Des., 2004, vol. 4, p. 633.Google Scholar