Advertisement

Colloid Journal

, Volume 80, Issue 6, pp 667–675 | Cite as

Disaggregation of Magnesium Octa[(4'-Benzo-15-Crown-5)Oxy]Phthalocyaninate in Aqueous Micellar Solutions of Alkyltriphenylphosphonium Bromide

  • T. G. MovchanEmail author
  • A. Yu. Chernyad’ev
  • E. V. Plotnikova
  • A. A. Averin
  • A. Yu. Tsivadze
  • V. E. Baulin
Article

Abstract—

The behavior of magnesium octa[(4'-benzo-15-crown-5)oxy]phthalocyaninate (Mgcr8Pc) in aqueous micellar solutions of alkyltriphenylphosphonium bromides (CnTPPBs), where n = 8, 12, 14, and 16, has been studied by means of electronic absorption spectroscopy and measurements of fluorescence photophysical characteristics. Intense bands of absorption (λmax = 683 nm) and fluorescence (λmax = 694 nm) of Mgcr8Pc in CnTPPB micellar solutions are characterized by monoexponential decay of intensity (lifetime of 5.98–6.29 ns) and indicate that magnesium phthalocyaninate has the monomeric form. The disaggregation of Mgcr8Pc in the presence of CnTPPBs provides an opportunity to use aqueous micellar solutions containing this metallophthalocyane in photodynamic therapy, because it is the monomeric form of Mgcr8Pc that generates singlet oxygen molecules, which kill tumor cells.

Notes

ACKNOWLEDGMENTS

Fluorescence measurements were carried out using the facilities of the Center for Collective Use of Physical Methods of Investigation, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences.

The study was carried out within the framework of a state assignment (project no. 0081-2014-0015) and supported by the Russian Foundation for Basic Research (project no. 18-03-00743).

REFERENCES

  1. 1.
    Jadhao, M., Mukherjee, S., Joshi, R., Kumar, H., and Ghosh, S.K., RSC Adv., 2016, vol. 6, p. 77161.CrossRefGoogle Scholar
  2. 2.
    Prasath, R. and Bhavana, P., J. Heterocycl. Chem., 2012, vol. 49, p. 1044.CrossRefGoogle Scholar
  3. 3.
    Senthilarasu, S., Velumani, R., Sathyamoorthy, G., Canizal, P., Sebastian, J., Chavez, A., Perez, R., Subbarayan, A., and Ascencio, J.A., Appl. Phys. A, 2003, vol. 77, p. 383.Google Scholar
  4. 4.
    Harbeck, M., Erbahar, D.D., Gurol, I., Musluoglu, E., Ahsen, V., and Ozturk, Z.Z., Sens. Actuators B, 2010, vol. 150, p. 346.Google Scholar
  5. 5.
    Gol’dshleger, N.F., Baulin, V.E., and Tsivadze, A.Yu., Fizikokhim. Poverkh. Zashch. Mater., 2014, vol. 50, p. 1.Google Scholar
  6. 6.
    Owens, J.W. and Robins, M., J. Porphyrins Phthalocyanines, 2001, vol. 05, p. 460.CrossRefGoogle Scholar
  7. 7.
    Biyiklioglu, Z., Cakir, V., Cakir, D., and Kantekin, H., J. Organomet. Chem., 2014, vol. 749, p. 18.CrossRefGoogle Scholar
  8. 8.
    Chissov, V.I., Sokolov, V.V., and Filonenko, E.V., Ross. Khim. Zh., 1998, vol. 42, p. 5.Google Scholar
  9. 9.
    Smirnova, Z.S., Oborotova, N.A., Makarova, O.A., Orlova, O.L., Polozkova, A.P., Kubasova, I.Yu., Luk’yanets, E.A., Meerovich, G.A., Zimakova, N.I., Kuz’min, S.G., Vorozhtsov, G.N., and Barysh-nikov, A.Yu., Khim.-Farm. Zh., 2005, vol. 39, no. 7, p. 3.Google Scholar
  10. 10.
    Ethirajan, M., Chen, Y., Joshi, P., and Pandey, R.K., Chem. Soc. Rev., 2011, vol. 40, p. 340.CrossRefGoogle Scholar
  11. 11.
    Chen, X.-W., Lan, W.-L., and Huang, J.-D., Chem. Asian J., 2013, vol. 8, p. 3063.CrossRefGoogle Scholar
  12. 12.
    Gol’dshleger, N.F., Kalashnikova, I.P., Baulin, V.E., and Tsivadze, A.Yu., Fizikokhim. Poverkh. Zashch. Mater., 2011, vol. 47, p. 55.Google Scholar
  13. 13.
    Gol’dshleger, N.F., Chernyak, A.V, Kalashnikova, I.P., Baulin, V.E., and Tsivadze, A.Yu., Zh. Org. Khim., 2012, vol. 82, p. 856.Google Scholar
  14. 14.
    Ovsyannikova, E.V., Kalashnikova, I.P., Baulin, V.E., Tsivadze, A.Yu., and Alpatova, N.M., Zh. Org. Khim., 2012, vol. 82, p. 1893.Google Scholar
  15. 15.
    Gol’dshleger, N.F., Lobach, A.S., Gak, V.Yu., Kalashnikova, I.P., Baulin, V.E., and Tsivadze, A.Yu., Fizikokhim. Poverkh. Zashch. Mater., 2014, vol. 50, p. 496.Google Scholar
  16. 16.
    Gol’dshleger, N.F., Lobach, A.S., Baulin, V.E., and Tsivadze, A.Yu., Usp. Khim., 2017, vol. 86, p. 269.CrossRefGoogle Scholar
  17. 17.
    Movchan, T.G., Averin, A.A., Baulin, D.V., Plotnikova, E.V., Baulin, V.E., and Tsivadze, A.Yu., Colloid J., 2018, vol. 80, p. 501.Google Scholar
  18. 18.
    Orlova, O.V., Sidullina, S.A., and Egorova, S.N., Med. Nauki, 2013, no. 5, p. 115.Google Scholar
  19. 19.
    Zakharova, L.R. and Konovalov, A.I., Colloid J., 2012, vol. 74, p. 194.CrossRefGoogle Scholar
  20. 20.
    Prasad, M., Moulik, S.P., Macdonald, A., and Palepu, R., J. Phys. Chem. B, 2004, vol. 108, p. 355.CrossRefGoogle Scholar
  21. 21.
    Thakkar K., Bharatiya B., Shah D.O., Ray D., Aswal, V.K., and Bahadur, P., Colloids Surf. A, 2015, vol. 484, p. 547.CrossRefGoogle Scholar
  22. 22.
    Movchan, T.G., Plotnikova, E.V., and Us’yarov, O.G., Colloid J., 2013, vol. 75, p. 319.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • T. G. Movchan
    • 1
    Email author
  • A. Yu. Chernyad’ev
    • 1
  • E. V. Plotnikova
    • 1
  • A. A. Averin
    • 1
  • A. Yu. Tsivadze
    • 1
  • V. E. Baulin
    • 1
    • 2
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of ScienceMoscowRussia
  2. 2.Institute of Physiologically Active Substances, Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations