Advertisement

Colloid Journal

, Volume 80, Issue 6, pp 640–647 | Cite as

Dynamics of Complete Evaporation of a Sessile Droplet of 1-Propanol–Water Solution at Different Ambient Humidities

  • A. E. KuchmaEmail author
  • N. E. Esipova
  • A. K. Shchekin
  • S. V. Itskov
Article

Abstract

Experimental data have been obtained on the complete diffusion evaporation of a sessile microdroplet of an aqueous 1-propanol solution on a hydrophobized polished quartz substrate in air at atmospheric pressure and room temperature. During the evaporation of the sessile droplet, time dependences have been determined for its key thermodynamic and geometric parameters, i.e., the contact angle, base surface area, and volume. It has been revealed that the character of time variations in the contact angle depends on the initial alcohol concentration in the droplet and air humidity. At a high alcohol concentration and a low air humidity, the droplet contact angle monotonically decreases throughout the evaporation process. The contact angle of a solution droplet with a prevailing content of water varies in several stages. In this case, the monotonic reduction in the contact angle is, at a certain moment, replaced by a stage of its growth. The comparison of the maximum contact angle of an evaporating droplet with the contact angle of a sessile droplet of pure water enables one to determine the amount of alcohol in a studied droplet by the end of this stage. The residual alcohol amount governs the subsequent evolution of the droplet up to its complete evaporation.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 16-03-01140_a.

REFERENCES

  1. 1.
    McHale, G., Rowan, S.M., Newton, M.I., and Banerjee, M.K., J. Phys. Chem. B, 1998, vol. 102, p. 1964.CrossRefGoogle Scholar
  2. 2.
    Rowan, S.M., Newton, M.I., and McHale, G., J. Phys. Chem., 1995, vol. 99, p. 13268.CrossRefGoogle Scholar
  3. 3.
    Birdi, K.S., Vu, D.T., and Winter, A., J. Phys. Chem., 1989, vol. 93, p. 3702.CrossRefGoogle Scholar
  4. 4.
    Birdi, K.S. and Vu, D.T., J. Adhes. Sci. Technol., 1993, vol. 7, p. 485.CrossRefGoogle Scholar
  5. 5.
    Shanahan, M.E.R. and Bourgès, C., Int. J. Adhes. Adhes., 1994, vol. 14, p. 201.CrossRefGoogle Scholar
  6. 6.
    Bourges-Monnier, C. and Shanahan, M.E.R., Langmuir, 1995, vol. 11, p. 2820.CrossRefGoogle Scholar
  7. 7.
    Birdi, K.S., Vu, D.T., and Winter, A., J. Phys. Chem., 1989, vol. 93, p. 3702.CrossRefGoogle Scholar
  8. 8.
    Anderson, D. and Davis, S., Phys. Fluids, 1995, vol. 7, p. 248.CrossRefGoogle Scholar
  9. 9.
    Popov, Y.O., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2005, vol. 71, p. 036313.CrossRefGoogle Scholar
  10. 10.
    Stauber, J.M., Wilson, S.K., Duffy, B.R., and Sefiane, K., Phys. Fluids, 2015, vol. 27, p. 122101.CrossRefGoogle Scholar
  11. 11.
    Kuchma, A.E., Shchekin, A.K., Esipova, N.E., Tat’yanenko, D.V., and Itskov, S.V., Colloid J., 2017, vol. 79, p. 353.CrossRefGoogle Scholar
  12. 12.
    Droplet Wetting and Evaporation. From Pure to Complex Fluids, Brutin, D., Ed., Amsterdam: Elsevier, 2015.Google Scholar
  13. 13.
    Bernardin, J.D., Mudawar, I., Walsh, C.B., and Franses, E.I., Int. J. Heat Mass Transfer, 1997, vol. 40, p. 1017.CrossRefGoogle Scholar
  14. 14.
    Nguyen, T.A.H., Nguyen, A.V., Hampton, M.A., Xu, Z.P., Huang, L., and Rudolph, V., Chem. Eng. Sci., 2012, vol. 69, p. 522.CrossRefGoogle Scholar
  15. 15.
    Nakae, H., Inui, R., Hirata, Y., and Saito, H., Acta Mater., 1998, vol. 46, p. 2313.CrossRefGoogle Scholar
  16. 16.
    Chow, T., J. Phys.B: Condens. Matter, 1998, vol. 10, p. 445.Google Scholar
  17. 17.
    Kuchma, A.E., Esipova, N.E., Mikheev, A.A., Shchekin, A.K., and Itskov, S.V., Colloid J., 2017, vol. 79, p. 779.CrossRefGoogle Scholar
  18. 18.
    Chiang, C.-K. and Lu, Y.-W., J. Micromech. Microeng., 2011, vol. 21, p. 075003.CrossRefGoogle Scholar
  19. 19.
    Sefiane, K., Tadrist, L., and Douglas, M., Int. J. Heat Mass Transfer, 2003, vol. 46, p. 4527.CrossRefGoogle Scholar
  20. 20.
    Cheng, A.K.H., Soolaman, D.M., and Yu, H.-Z., J. Phys. Chem. B, 2006, vol. 110, p. 11267.CrossRefGoogle Scholar
  21. 21.
    Sefiane, K., David, S., and Shanahan, M.E.R., J. Phys. Chem. B, 2008, vol. 112, p. 11317.CrossRefGoogle Scholar
  22. 22.
    Rowan, S.M., Newton, M.I., Driewer, F.W., and McHale, G., J. Phys. Chem. B, 2000, vol. 104, p. 8217.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. E. Kuchma
    • 1
    Email author
  • N. E. Esipova
    • 2
  • A. K. Shchekin
    • 1
  • S. V. Itskov
    • 2
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations