Advertisement

Colloid Journal

, Volume 80, Issue 5, pp 569–577 | Cite as

Special Features of the Interaction between Asymmetric Dimethylhydrazine and Thiocontaining Schungite

  • A. V. Ul’yanov
  • I. G. Zenkevich
  • I. A. Polunina
  • K. E. Polunin
  • A. K. Buryak
Article
  • 2 Downloads

Abstract

The interaction between asymmetric dimethylhydrazine and thiocontaining mineral schungite-III has been studied. Chromatography–mass spectrometry has been used to identify alkyl polysulfides as the products of desorption of asymmetric dimethylhydrazine from schungite surface. The interaction of asymmetric dimethylhydrazine with crystalline sulfur has been investigated in a model system. Dimethyl polysulfides, CH3SnCH3; (dimethylamino)methyl polysulfides, (CH3)2NSnCH3; and bis(dimethylamino) polysulfides, (CH3)2NSnN(CH3)2, with 2 ≤ n ≤ 4 have been detected. Gas-chromatographic retention indices have been determined for the products of the interaction of asymmetric dimethylhydrazine with sulfur and the schungite material.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schmidt, W.E., Hydrazine and Its Derivatives, New York: Wiley, 2001.Google Scholar
  2. 2.
    Ioffe, B.V., Kuznetsov, M.A., and Potekhin, A.A., Khimiya organicheskikh proizvodnykh gidrazina (Chemistry of Organic Hydrazine Derivatives), Leningrad: Khimiya, 1980.Google Scholar
  3. 3.
    Buryak, A.K. and Serdyuk, T.M., Usp. Khim., 2013, vol. 82, p. 369.CrossRefGoogle Scholar
  4. 4.
    Smolenkov, A.D., Poputnikova, T.O., Smirnov, R.S., Rodin, I.A., and Shpigun, O.A., Teor. Prikl. Ekol., 2013, no. 2, p. 63.Google Scholar
  5. 5.
    Smolenkov, A.D. and Shpigun, O.K., Talanta, 2012, vol. 102, p. 93.CrossRefGoogle Scholar
  6. 6.
    Ekologicheskii monitoring raketno-kosmicheskoi deyatel’nosti. Printsipy i metody (Ecological Monitoring of Rocket-Space Activity. Principles and Methods), Kasimov, N.S. and Shpigun, O.A., Eds., Moscow: Restart, 2011.Google Scholar
  7. 7.
    Golub, S.L., Ul’yanov, A.V., Buryak, A.K., Lugovskaya, I.G., Anufrieva, S.I., and Dubinchuk, V.T., Sorbts. Khromatogr. Protsessy, 2006, vol. 6, p. 855.Google Scholar
  8. 8.
    Ul’yanov, A.V., Polunina, I.A., Polunin, K.E., and Buryak, A.K., Colloid J., 2018, vol. 80, p. 96.CrossRefGoogle Scholar
  9. 9.
    Akimbaeva, A.M., Pet. Chem., 2007, vol. 47, p. 205.CrossRefGoogle Scholar
  10. 10.
    Shungity−novoe uglerodistoe syr’e (Shungites as New Carbonaceous Raw), Sokolov, V.A., Kalinin, Yu.K., and Dyukkiev, E.F., Eds., Petrozavodsk: Kareliya, 1984.Google Scholar
  11. 11.
    Berezkin, V.I., Uglerod. Zamknutye nanochastitsy, makrostruktury, materialy (Carbon. Closed Nanoparticles, Macrostructures, Materials), St. Petersburg: AtrErgo, 2013.Google Scholar
  12. 12.
    Polunin, K.E., Goncharova, I.S., Ul’yanov, A.V., Polunina, I.A., and Buryak, A.K., Colloid J., 2017, vol. 79, p. 250.CrossRefGoogle Scholar
  13. 13.
    Taylor, P., Durham Theses, Durham Univ., 1989. https://doi.org/etheses.dur.ac.uk/6482 Google Scholar
  14. 14.
    Organic Chemicals Product Information. Mercaptans and Derivative Chemistry, Philadelphia, Arkema, 2001. https://doi.org/www.arkemagroup.com
  15. 15.
    Yamada, S., Wang, D., Li, S., Nishikawa, M., Qian, E.W., Ishikara, A., and Kabe, T., Chem. Commun., 2003, p. 842.Google Scholar
  16. 16.
    Russavskaya, N.V., Grabel’nykh, V.A., Levanova, E.P., Sukhomazova, E.N., and Deryagina, E.N., Zh. Org. Khim., 2002, vol. 38, p. 1498.Google Scholar
  17. 17.
    Nesmeyanov, A.N. and Nesmeyanov, N.A., Nachala organicheskoi khimii (Elements of Organic Chemistry), Moscow: Khimiya, 1974, vol. 2.Google Scholar
  18. 18.
    Taniguchi, N., Synlett, 2007, no. 12, p. 1917.CrossRefGoogle Scholar
  19. 19.
    Middleton, W.H., J. Am. Chem. Soc., 1966, vol. 88, p. 3842.CrossRefGoogle Scholar
  20. 20.
    Chivers, T., A Guide to Chalcogen–Nitrogen Chemistry, Singapore: World Scientific, 2005.CrossRefGoogle Scholar
  21. 21.
    Darwent, B. de B., Bond Dissociation Energies in Simple Molecules, Washington: Nat. Stand. Ref. Data Ser., 1970.Google Scholar
  22. 22.
    Zenkevich, I.G., in 100 let khromatografii (100 Years of Chromatography), Moscow: Nauka, 2003, p. 311.Google Scholar
  23. 23.
    Zenkevich, I.G., Ul’yanov, A.V., Golub, S.L., and Buryak, A.K., Russ. J. Gen. Chem., 2014, vol. 84, p. 1106.CrossRefGoogle Scholar
  24. 24.
    Zenkevich, I.G. and Ioffe, B.V., J. Chromatogr., 1988, vol. 439, p. 185.CrossRefGoogle Scholar
  25. 25.
    Savel’eva, E.I., Zenkevich, I.G., and Radilov, A.S., Zh. Anal. Khim., 2003, vol. 58, p. 114.Google Scholar
  26. 26.
    Lebedev, A.T., Mass-spektrometriya v organicheskoi khimii (Mass Spectrometry in Organic Chemistry), Moscow: Binom, 2003.Google Scholar
  27. 27.
    The NIST 11 Mass Spectral Library(NIST11/2011/EPA/NIH). Software/Data Version (NIST11); NIST Standard Reference Database, Number 69, August 2011. Natl. Inst. of Standards and Technology, Gaithesberg, MD 20899; https://doi.org/webbook.nist.gov
  28. 28.
    Polunina, I.A., Vysotskii, V.V., Senchikhin, I.N., Goncharova, I.S., Petukhova, G.A., and Buryak, A.K., Colloid J., 2017, vol. 79, p. 244.CrossRefGoogle Scholar
  29. 29.
    Ul’yanov, A.V., Polunina, I.A., Polunin, K.E., and Buryak, A.K., Colloid J., 2018, vol. 80, p. 591.Google Scholar
  30. 30.
    Spravochnik po toksikologii i gigienicheskim normativam (PDK) potentsial’no opasnykh khimicheskikh veshchestv (A Handbook on Toxicology and Hygienic Standards (MPC) for Potentially Hazardous Chemical Compounds), Kushneva, V.S. and Gorshkova, R.B., Eds., Moscow: IzdAT, 1999.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Ul’yanov
    • 1
  • I. G. Zenkevich
    • 2
  • I. A. Polunina
    • 1
  • K. E. Polunin
    • 1
  • A. K. Buryak
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations