Advertisement

Colloid Journal

, Volume 80, Issue 5, pp 550–555 | Cite as

On the Chemical Processes Accompanying Silver Reduction from Solutions of Its Salts in Organic Media

  • I. N. Senchikhin
  • E. S. Zhavoronok
  • O. Ya. Uryupina
  • A. V. Shabatin
  • R. R. Khasanova
  • E. S. Belyaev
  • V. I. Roldughin
Article
  • 6 Downloads

Abstract

Silver reduction from its nitrate has been studied in the media of DGEBA-based and aliphatic epoxy resins. It has been found that, under the experimental conditions that were employed, silver ions can be reduced without chemical interaction with the medium only due to photochemical processes. The reduction rate is determined by the rate of dissolution of the initial silver salt in an organic medium and the possibility of the formation of solvates by the system components. Refractometry has been proposed for use in monitoring the kinetics of silver nitrate dissolution in epoxy resins and the formation of silver nanoparticles. Stable dispersions of silver nanoparticles in epoxy resins have been obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajayan, P.M., Schadler, L.S., and Braun, P.V., Nanocomposite Science and Technology, Weinheim: Wiley-VCH, 2003.CrossRefGoogle Scholar
  2. 2.
    Twardowski, T.E., Introduction to Nanocomposite Materials: Properties, Processing, Characterization, Lancaster: DEStech, 2007.Google Scholar
  3. 3.
    Koo, J.H., Polymer Nanocomposites: Processing, Characterization, and Applications, Toronto: McGraw-Hill Nanoscience and Technology Ser., 2010.Google Scholar
  4. 4.
    Roldughin, V.I., Usp. Khim., 2000, vol. 69, p. 899.CrossRefGoogle Scholar
  5. 5.
    Roldughin, V.I., Usp. Khim., 2004, vol. 73, p. 123.CrossRefGoogle Scholar
  6. 6.
    Dykman, L.A. and Bogatyrev, V.A., Usp. Khim., 2007, vol. 76, p. 200.CrossRefGoogle Scholar
  7. 7.
    Krutyakov, Yu.A., Kudrinskii, A.A., Olenin, A.Yu., and Lisichkin, G.V., Usp. Khim., 2008, vol. 77, p. 242.CrossRefGoogle Scholar
  8. 8.
    Kerker, M., J. Colloid Interface Sci., 1985, vol. 105, p. 297.CrossRefGoogle Scholar
  9. 9.
    Moiseev, S.G., Izv. Vyssh. Uchebn. Zaved., Fiz., 2009, no. 11, p. 7.Google Scholar
  10. 10.
    Moiseev, S.G., Appl. Phys. A, 2011, vol. 103, p. 619.CrossRefGoogle Scholar
  11. 11.
    Moiseev, S.G., Appl. Phys. A, 2011, vol. 103, p. 775.CrossRefGoogle Scholar
  12. 12.
    Panfilova, E.V., Khlebtsov, B.N., Burov, A.M., and Khlebtsov, N.G., Colloid J., 2012, vol. 74, p. 99.CrossRefGoogle Scholar
  13. 13.
    Henglein, A., Chem. Rev., 1989, vol. 89, p. 1861.CrossRefGoogle Scholar
  14. 14.
    Suvorova, E.I., Doctoral (Phys.-Math.) Dissertation, Moscow: Inst. of Crystallography, Russ. Acad. Sci., 2006.Google Scholar
  15. 15.
    Smirnova, L.A., Aleksandrov, A.P., Yakimovich, N.O., Sapogova, N.V., Kirsanov, A.V., Soustov, L.V., and Bityurin, N.M., Dokl. Akad. Nauk, 2005, vol. 400, p. 779.Google Scholar
  16. 16.
    Yakimovich, N.O., Sapogova, N.V., Smirnova, L.A., Aleksandrov, A.P., Bityurin, N.M., and Kirsanov, A.V., Vestn. Nizhegorodsk. Univ., Khim., 2004, no. 1, p. 170.Google Scholar
  17. 17.
    Dimesso, L., Humm, S., Fuess, H., and Hahn, H., Ber. Bunsen-Ges. Phys. Chem., 1997, vol. 101, p. 1750.CrossRefGoogle Scholar
  18. 18.
    Roldughin, V.I. and Rudoy, V.M., Colloid J., 2017, vol. 79, p. 809.CrossRefGoogle Scholar
  19. 19.
    Semyonov, S.A., Colloid J., 2013, vol. 75, p. 421.CrossRefGoogle Scholar
  20. 20.
    Semyonov, S.A. and Rudoy, V.M., Colloid J., 2013, vol. 75, p. 600.CrossRefGoogle Scholar
  21. 21.
    Semyonov, S.A., Rudoy, V.M., and Khlebtsov, N.G., Colloid J., 2016, vol. 78, p. 386.CrossRefGoogle Scholar
  22. 22.
    Rycenga, M., Cobley, C.M., Zeng, J., Li, W., Moran, C.H., Zhang, Q., Qin, D., and Xia, Y., Chem. Rev., 2011, vol. 111, p. 3669.CrossRefGoogle Scholar
  23. 23.
    Senchikhin, I.N., Uryupina, O.Ya., Zhavoronok, E.S., Vysotskii, V.V., and Roldughin, V.I., Colloid J., 2016, vol. 78, p. 505.CrossRefGoogle Scholar
  24. 24.
    Bogdanova, L.M., Kuzub, L.I., Dzhavadyan, E.A., Torbov, V.I., Dremova, N.N., and Pomogailo, A.D., Polym. Sci., Ser. A, 2014, vol. 56, p. 304.CrossRefGoogle Scholar
  25. 25.
    Venediktov, E.A. and Rozhkova, E.P., Russ. J. Appl. Chem., 2013, vol. 86, p. 928.CrossRefGoogle Scholar
  26. 26.
    Dell’Erba, I.E., Martínez, F.D., Hoppe, C.E., Elica̧be, G.E., Ceolín, M., Zucchi, I.A., and Schroeder, W.F., Langmuir, 2017, vol. 33, p. 10248.CrossRefGoogle Scholar
  27. 27.
    Boryak, O.A., Kosevich, M.V., Chagovets, V.V., and Shelkovskii, V.S., Mass-Spektrometriya, 2016, vol. 13, p. 167.Google Scholar
  28. 28.
    Zhavoronok, E.S., Senchikhin, I.N., Kolesnikova, E.F., Chalykh, A.E., Kiselev, M.R., and Roldughin, V.I., Polym. Sci., Ser. B, 2010, vol. 52, p. 235.CrossRefGoogle Scholar
  29. 29.
    Zhavoronok, E.S., Senchikhin, I.N., Chalykh, A.E., and Roldughin, V.I., Izv. VolgGTU, 2015, no. 7.Google Scholar
  30. 30.
    Pillai, Z.S. and Kamat, P.V., J. Phys. Chem. B, 2004, vol. 108, p. 945.CrossRefGoogle Scholar
  31. 31.
    Nikonorova, N.I., Semenova, E.V., Zanegin, V.D., Lukovkin, G.M., Volynskii, A.L., and Bakeev, N.F., Vysokomol. Soedin., 1992, vol. 34, p. 123.Google Scholar
  32. 32.
    Wiley, B., Sun, Y., and Xia, Y., Acc. Chem. Res., 2007, vol. 40, p. 1067.CrossRefGoogle Scholar
  33. 33.
    Fievet, F., Lagier, J.P., and Figlarz, M., MRS Bull., 1989, vol. 14, p. 29.CrossRefGoogle Scholar
  34. 34.
    Viau, G., Fievet-Vincent, F., and Fievet, F., Solid State Ionics, 1996, vol. 84, p. 259.CrossRefGoogle Scholar
  35. 35.
    Sun, Y., Yin, Y., Mayers, B.T., Herricks, T., and Xia, Y., Chem. Mater., 2002, vol. 14, p. 4736.CrossRefGoogle Scholar
  36. 36.
    Skrabalak S.E., Au L., Li X., Xia Y., Nat. Protocols., 2007, vol. 2. p. 2182.Google Scholar
  37. 37.
    Skrabalak, S.E., Wiley, B.J., Kim, M., Formo, E.V., and Xia, Y., Nano Lett., 2008, vol. 8, p. 2077.CrossRefGoogle Scholar
  38. 38.
    Sung, K., J. Mol. Struct., 1999, vol. 468, p. 105.CrossRefGoogle Scholar
  39. 39.
    Kiryukhin, M.V., Sergeev, B.M., Prusov, A.N., and Sergeev, V.G., Polym. Sci., Ser. B, 2000, vol. 42, p. 324.Google Scholar
  40. 40.
    Gamov, G.A., Dushina, S.V., Aleksandriiskii, V.V., and Sharnin, V.A., Russ. J. Phys. Chem., 2013, vol. 87, p. 418.CrossRefGoogle Scholar
  41. 41.
    Nizamov, T.R., Cand. Sci. (Chem.) Dissertation, Moscow: Moscow State Univ., 2014.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. N. Senchikhin
    • 1
  • E. S. Zhavoronok
    • 2
  • O. Ya. Uryupina
    • 1
  • A. V. Shabatin
    • 1
  • R. R. Khasanova
    • 2
  • E. S. Belyaev
    • 1
  • V. I. Roldughin
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Chair of Biotechnology and Industrial PharmaceuticsMoscow Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)MoscowRussia

Personalised recommendations