Advertisement

Colloid Journal

, Volume 80, Issue 5, pp 541–549 | Cite as

Some Aspects of Seedless Synthesis of Gold Nanorods

  • N. A. Salavatov
  • O. V. Dement’eva
  • A. I. Mikhailichenko
  • V. M. Rudoy
Article

Abstract

Seedless synthesis of gold nanorods with the use of sodium borohydride and hydroquinone as reductants of metal ions has been systematically studied. The effect of reaction system composition on the morphology and optical characteristics of the formed particles has been determined. It has been found that the position of the band of the longitudinal surface plasmon resonance of the nanorods varies nonmonotonically with variations in the concentration of hydroquinone or silver nitrate. The seedless synthesis has been shown to yield high-quality gold nanorods, with the tunable position of their longitudinal surface plasmon resonance in a wide spectral range (from 700 to ~1050 nm). Therewith, the conversion of metal ions is no lower than 78 wt %.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Active Plasmonic and Tuneable Plasmonic Metamaterials, Zayats, A.V. and Maier, S., Hoboken: Wiley and Science Wise, 2013.Google Scholar
  2. 2.
    Alvarez-Puebla, R.A., Agarwal, A., Manna, P., Khanal, B.P., Aldeanueva-Potel, P., Carbo-Argibay, E., Pazos-Perez, N., Vigderman, L., Zubarev, E.R., Kotov, N.A., and Liz-Marzán, L.M., Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, p. 8157.CrossRefGoogle Scholar
  3. 3.
    Lee, A., Andrade, G.F.S., Ahmed, A., Souza, M.L., Coombs, N., Tumarkin, E., Liu, K., Gordon, R., Brolo, A.G., and Kumacheva, E., J. Am. Chem. Soc., 2011, vol. 133, p. 7563.CrossRefGoogle Scholar
  4. 4.
    Kabashin, A.V., Evans, P., Pastkovsky, S., Hendren, W., Wurtz, G.A., Atkinson, R., Pollard, R., Podolskiy, V.A., and Zayats, A.V., Nat. Mater., 2009, vol. 8, p. 867.CrossRefGoogle Scholar
  5. 5.
    Wang, L.B., Zhu, Y.Y., Xu, L.G., Chen, W., Kuang, H., Liu, L.Q., Agarwal, A., Xu, C.L., and Kotov, N.A., Angew. Chem., Int. Ed. Engl., 2010, vol. 49, p. 5472.CrossRefGoogle Scholar
  6. 6.
    Vigderman, L., Khanal, B.P., and Zubarev, E.R., Adv. Mater. (Weinheim, Fed. Repub. Ger.), 2012, vol. 24, p. 4811.CrossRefGoogle Scholar
  7. 7.
    Zijlstra, P., Chon, J.W.M., and Gu, M., Nature (London), 2009, vol. 459, p. 410.CrossRefGoogle Scholar
  8. 8.
    Protsenko, I.E., Uskov, A.V., and Rudoi, V.M., JETP, 2014, vol. 119, p. 227.CrossRefGoogle Scholar
  9. 9.
    Jain, P.K., Lee, K.S., El-Sayed, I.H., and El-Sayed, M.A., J. Phys. Chem. B, 2006, vol. 110, p. 7238.CrossRefGoogle Scholar
  10. 10.
    Huang, X.H., El-Sayed, I.H., Qian, W., and El-Sayed, M.A., J. Am. Chem. Soc., 2006, vol. 128, p. 2115.CrossRefGoogle Scholar
  11. 11.
    Jain, P.K., El-Sayed, I.H., and El-Sayed, M.A., Nano Today, 2007, vol. 2, p. 18.CrossRefGoogle Scholar
  12. 12.
    Xue, X., Wang, F., and Liu, X., J. Mater. Chem., 2011, vol. 21, p. 13107.CrossRefGoogle Scholar
  13. 13.
    Cole, J.R., Mirin, N.A., Knight, M.W., Goodrich, G.P., and Halas, N.J., J. Phys. Chem. C, 2009, vol. 113, p. 12090.CrossRefGoogle Scholar
  14. 14.
    Dykman, L. and Khlebtsov, N., Chem. Soc. Rev., 2012, vol. 41, p. 2256.CrossRefGoogle Scholar
  15. 15.
    Khlebtsov, N., Bogatyrev, V., Dykman, L., Khlebtsov, B., Staroverov, S., Shirokov, A., Matora, L., Khanadeev, V., Pylaev, T., Tsyganova, N., and Terentyuk, G., Theranostics, 2013, vol. 3, p. 167.CrossRefGoogle Scholar
  16. 16.
    Dreaden, E.C., Alkilany, A.M., Huang, X., Murphy, C.J., and El-Sayed, M.A., Chem. Soc. Rev., 2012, vol. 41, p. 2740.CrossRefGoogle Scholar
  17. 17.
    Lohse, S.E. and Murphy, C.J., Chem. Mater., 2013, vol. 25, p. 1250.CrossRefGoogle Scholar
  18. 18.
    Sau, T.K. and Murphy, C.J., Langmuir, 2004, vol. 20, p. 6414.CrossRefGoogle Scholar
  19. 19.
    Obare, S.O., Jana, N.R., and Murphy, C.J., Nano Lett., 2001, vol. 1, p. 601.CrossRefGoogle Scholar
  20. 20.
    Nikoobakht, B. and El-Sayed, M.A., Chem. Mater., 2003, vol. 15, p. 1957.CrossRefGoogle Scholar
  21. 21.
    Bullen, C., Zijlstra, P., Bakker, E., Gu, M., and Raston, C., Cryst. Growth Des., 2011, vol. 11, p. 3375.CrossRefGoogle Scholar
  22. 22.
    Edgar, J.A., McDonagh, A.M., and Cortie, M.B., ACS Nano, 2012, vol. 6, p. 1116.CrossRefGoogle Scholar
  23. 23.
    Park, K., Drummy, L., Wadams, R.C., Koerner, H., Nepal, D., Fabris, L., and Vaia, R.A., Chem. Mater., 2013, vol. 25, p. 555.CrossRefGoogle Scholar
  24. 24.
    Scarabelli, L., Sánchez-Iglesias, A., Pérez-Juste, J., and Liz-Marzán, L.M., J. Phys. Chem. Lett., 2015, vol. 6, p. 4270.CrossRefGoogle Scholar
  25. 25.
    Hubert, F., Testard, F., and Spalla, O., Langmuir, 2008, vol. 24, p. 9219.CrossRefGoogle Scholar
  26. 26.
    Murphy, C.J., Thompson, L.B., Alkilany, A.M., Sisco, P.N., Boulos, S.P., Sivapalan, S.T., Yang, J.A., Chernak, D.J., and Huang, J., J. Phys. Chem. Lett., 2010, vol. 1, p. 2867.CrossRefGoogle Scholar
  27. 27.
    Ye, X., Zheng, C., Chen, J., Gao, Y., and Murray, C.B., Nano Lett., 2013, vol. 13, p. 765.CrossRefGoogle Scholar
  28. 28.
    Almora-Barrios, N., Novell-Leruth, G., Whiting, P., Liz-Marzán, L.M., and Lopez, N., Nano Lett., 2014, vol. 14, p. 871.CrossRefGoogle Scholar
  29. 29.
    Alekseeva, A.V., Bogatyrev, V.A., Khlebtsov, B.N., Mel’nikov, A.G., Dykman, L.A., and Khlebtsov, N.G., Colloid J., 2006, vol. 68, p. 661.CrossRefGoogle Scholar
  30. 30.
    Ye, X., Gao, Y., Chen, J., Reifsnyder, D.C., Zheng, C., and Murray, C.B., Nano Lett., 2013, vol. 13, p. 2163.CrossRefGoogle Scholar
  31. 31.
    Khlebtsov, B.N., Khanadeev, V.A., Ye, J., Sukhorukov, G.B., and Khlebtsov, N.G., Langmuir, 2014, vol. 30, p. 1696.CrossRefGoogle Scholar
  32. 32.
    Smith, D.K. and Korgel, B.A., Langmuir, 2008, vol. 24, p. 644.CrossRefGoogle Scholar
  33. 33.
    Miller, N.R. and Korgel, B.A., Langmuir, 2009, vol. 25, p. 9518.CrossRefGoogle Scholar
  34. 34.
    Rayavarapu, R.G., Ungureanu, C., Krystek, P., Van Leeuwen, T.G., and Manohar, S., Langmuir, 2010, vol. 26, p. 5050.CrossRefGoogle Scholar
  35. 35.
    Wei, Q.S., Ji, J., and Shen, J.C., J. Nanosci. Nanotechnol., 2008, vol. 8, p. 5708.CrossRefGoogle Scholar
  36. 36.
    Park, W.M., Huh, Y.S., and Hong, W.H., Curr. Appl. Phys., 2009, vol. 9, p. e140.Google Scholar
  37. 37.
    Liu, M.Z. and Guyot-Sionnest, P., J. Phys. Chem. B, 2005, vol. 109, p. 22192.CrossRefGoogle Scholar
  38. 38.
    Jackson, S.R., McBride, J.R., Rosenthal, S.J., and Wright, D.W., J. Am. Chem. Soc., 2014, vol. 136, p. 5261.CrossRefGoogle Scholar
  39. 39.
    Walsh, M.J., Barrow, S.J., Tong, W., Funston, A.M., and Etheridge, J., ACS Nano, 2015, vol. 9, p. 715.CrossRefGoogle Scholar
  40. 40.
    Katz-Boon, H., Walsh, M., Dwyer, C., Mulvaney, P., Funston, A.M., and Etheridge, J., Nano Lett., 2015, vol. 15, p. 1635.CrossRefGoogle Scholar
  41. 41.
    Tong, W., Walsh, M.J., Mulvaney, P., Etheridge, J., and Funston, A.M., J. Phys. Chem. C, 2017, vol. 121, p. 3549.CrossRefGoogle Scholar
  42. 42.
    Zhu, H., Chen, M., Yue, J., Liang, L., and Jiang, X., J. Nanopart. Res., 2017, vol. 19, p. 183.CrossRefGoogle Scholar
  43. 43.
    Zhang, Q., Jing, H., Li, G.G., Lin, Y., Blom, D.A., and Wang, H., Chem. Mater., 2016, vol. 28, p. 2728.CrossRefGoogle Scholar
  44. 44.
    Garg, N., Scholl, C., Mohanty, A., and Jin, R., Langmuir, 2010, vol. 26, p. 10271.CrossRefGoogle Scholar
  45. 45.
    Si, S., Leduc, C., Delville, M.H., and Lounis, B., ChemPhysChem, 2012, vol. 13, p. 193.CrossRefGoogle Scholar
  46. 46.
    Lohse, S.E., Burrows, N.D., Scarabelli, L., Liz-Marzán, L.M., and Murphy, C.J., Chem. Mater., 2014, vol. 26, p. 34.CrossRefGoogle Scholar
  47. 47.
    Ye, X., Jin, L., Caglayan, H., Chen, J., Xing, G., Zheng, C., Doan-Nguyen, V., Kang, Y., Engheta, N., Kagan, C.R., and Murray, C.B., ACS Nano, 2012, vol. 6, p. 2804.CrossRefGoogle Scholar
  48. 48.
    Gole, A. and Murphy, C.J., Chem. Mater., 2004, vol. 16, p. 3633.CrossRefGoogle Scholar
  49. 49.
    Jiang, X.C. and Pileni, M.P., Colloids Surf. A, 2007, vol. 295, p. 228.CrossRefGoogle Scholar
  50. 50.
    Samal, A.K., Sreeprasad, T.S., and Pradeep, T., J. Nanopart. Res., 2010, vol. 12, p. 1777.CrossRefGoogle Scholar
  51. 51.
    Watt, J., Hance, B.G., Anderson, R.S., and Huber, D.L., Chem. Mater., 2015, vol. 27, p. 6442.CrossRefGoogle Scholar
  52. 52.
    Ward, C.J., Tronndorf, R., Eustes, A.S., Auad, M.L., and Davis, E.W., J. Nanomater., 2014, vol. 2014, p. 765618.CrossRefGoogle Scholar
  53. 53.
    Vigderman, L. and Zubarev, E.R., Chem. Mater., 2013, vol. 25, p. 1450.CrossRefGoogle Scholar
  54. 54.
    Su, G., Yang, C., and Zhu, J.J., Langmuir, 2015, vol. 31, p. 817.CrossRefGoogle Scholar
  55. 55.
    Orendorff, C.J. and Murphy, C.J., J. Phys. Chem. B, 2006, vol. 110, p. 3990.CrossRefGoogle Scholar
  56. 56.
    Kozek, K.A., Kozek, K.M., Wu, W.-C., Mishra, S.R., and Tracy, J.B., Chem. Mater., 2013, vol. 25, p. 4537.CrossRefGoogle Scholar
  57. 57.
    Jana, N.R., Small, 2005, vol. 1, p. 875.CrossRefGoogle Scholar
  58. 58.
    Ali, M.R.K., Snyder, B., and El-Sayed, M.A., Langmuir, 2012, vol. 28, p. 9807.CrossRefGoogle Scholar
  59. 59.
    Zhang, L., Xia, K., Lu, Z., Li, G., Chen, J., Deng, Y., Li, S., Zhou, F., and He, N., Chem. Mater., 2014, vol. 26, p. 1794.CrossRefGoogle Scholar
  60. 60.
    Wang, W., Li, J., Lan, S., Rong, L., Liu, Y., Sheng, Y., Zhang, H., and Yang, B., Nanotechnology, 2016, vol. 27, p. 165601.CrossRefGoogle Scholar
  61. 61.
    Xu, X., Zhao, Y., Xue, X., Huo, S., Chen, F., Gu, Z., and Liang, X.-J., J. Mater. Chem. A, 2014, vol. 2, p. 3528.CrossRefGoogle Scholar
  62. 62.
    Liopo, A., Wang, S., Derry, P.J., Oraevsky, A.A., and Zubarev, E.R., RSC Adv., 2015, vol. 5, p. 91587.CrossRefGoogle Scholar
  63. 63.
    Liu, K., Bu, Y., Zheng, Y., Jiang, X., Yu, A., and Wang, H., Chem.-Eur. J., 2017, vol. 23, p. 3291.CrossRefGoogle Scholar
  64. 64.
    Abkhalimov, E.V., Il’ina, E.A., Timofeev, A.A., and Ershov, B.G., Colloid J., 2018, vol. 80, p. 141.CrossRefGoogle Scholar
  65. 65.
    Semyonov, S.A., Rudoy, V.M., and Khlebtsov, N.G., Colloid J., 2016, vol. 78, p. 386.CrossRefGoogle Scholar
  66. 66.
    Khlebtsov, B.N. and Khlebtsov, N.G., J. Phys. Chem. C, 2007, vol. 111, p. 11516.CrossRefGoogle Scholar
  67. 67.
    Link, S., Mohamed, M.B., and El-Sayed, M.A., J. Phys. Chem. B, 1999, vol. 103, p. 3073.CrossRefGoogle Scholar
  68. 68.
    Park, J.-E., Kim, M., Hwang, J.-H., and Nam, J.-M., Small Methods, 2017, vol. 1, p. 1600032.CrossRefGoogle Scholar
  69. 69.
    Li, L., Wang, L., Du, X., Lu, Y., and Yang, Z., J. Colloid Interface Sci., 2007, vol. 315, p. 671.CrossRefGoogle Scholar
  70. 70.
    Steinfeld, J.I., Francisco, J.S., and Hase, W.L., Chemical Kinetics and Dynamics, Upper Saddle River: Prentice Hall, 1989.Google Scholar
  71. 71.
    Khlebtsov, B.N., Khanadeev, V.A., Bogatyrev, V.A., Dykman, L.A., and Khlebtsov, N.G., Nanotechnol. Russ., 2009, vol. 4, nos. 7–8, p. 453.CrossRefGoogle Scholar
  72. 72.
    Nizamov, T.R., Evstaf’ev, I.V., Olenin, A.Yu., and Lisichkin, G.V., Colloid J., 2014, vol. 76, p. 471.CrossRefGoogle Scholar
  73. 73.
    Near, R.D., Hayden, S.C., and El-Sayed, M.A., J. Phys. Chem. C, 2013, vol. 117, p. 18653.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. A. Salavatov
    • 1
    • 2
  • O. V. Dement’eva
    • 1
  • A. I. Mikhailichenko
    • 2
  • V. M. Rudoy
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations