Colloid Journal

, Volume 80, Issue 2, pp 214–228 | Cite as

The Effect of Temperature on Nucleation of Condensed Water Phase on the Surface of a β-AgI Crystal. 1. Structure

Article
  • 13 Downloads

Abstract

The Monte Carlo method has been employed to study the effect of temperature on the structure and the mechanism of retaining condensed water phase nuclei on the surface of the basal face of a silver iodide crystal. Comparative calculations of spatial correlation functions and computer images of vapors being condensed at 260 and 320 K have indicated an increased stability of monomolecular water-film spots with respect to thermal fluctuations. The disturbances of the regular “honeycomb” structure have a collective character and occur according to the “domino principle”; i.e., the rupture of a hydrogen bond between neighboring molecules releases enhanced libration motions of the latter, which, in turn, provoke the rupture of bonds with other neighbors. In accordance with this scenario, the distortion of the hexagonal structure of the film under the action of thermal fluctuations develops with the formation of growing spots of destruction. The thermal fluctuations significantly affect the orientational molecular order and the degree of clustering on the surface. The positions of molecules relative to the ions of the surface crystallographic layer of a substrate weakly depend on temperature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zalikhanov, M.Ch., Fedchenko, L.M., Ekba, Ya.A., Sviridenko, A.S., Kaplan, L.G., and Atabiev, M.D., Abstracts of Papers, Vsesoyuz. konf. “Aktivnye vozdeistviya na gidrometeorologicheskie protsessy” (All-Union Conf. “Active Effects on Hydrometeorological Processes”), Nal’chik, 1991, St. Petersburg: Gidrometeoizdat, 1995, vol. 1, p. 11.Google Scholar
  2. 2.
    Zimin, B.I. and Shipilov, O.I., Abstracts of Papers, Vsesoyuz. konf. “Aktivnye vozdeistviya na gidrometeorologicheskie protsessy” (All-Union Conf. “Active Effects on Hydrometeorological Processes”), Nal’chik, 1991, St. Petersburg: Gidrometeoizdat, 1995, vol. 1, p. 59.Google Scholar
  3. 3.
    Bakhsoliani, M.G., Bessonov, V.A., Grishin, Yu.P., Iordanskii, M.A., Kartsivadze, A.I., Nesmeyanov, P.A., Salukvadze, T.G., Simonov, A.Ya., Sutugin, A.G., and Tsitskishvili, M.S., Abstracts of Papers, Vsesoyuz. seminar “Aktivnye vozdeistviya na gradovye protsessy i perspektivy usovershenstvovaniya l’doobrazuyushchikh reagentov dlya praktiki aktivnykh vozdeistvii” (All-Union Workshop “Active Effects of Hail Processes and Prospects of Refining of Ice-Forming Reagents for Active Effect Practice”), Nal’chik, 1989, Fedchenko, L.M., Ed., Moscow: Gidrometeoizdat, 1991, p. 136.Google Scholar
  4. 4.
    Leskov, B.N., Abstracts of Papers, Vsesoyuz. konf. “Aktivnye vozdeistviya na gidrometeorologicheskie protsessy” (All-Union Conf. “Active Effect on Hydrometeorological Processes”), Nal’chik, 1991, St. Petersburg: Gidrometeoizdat, 1995, vol. 1, p. 86.Google Scholar
  5. 5.
    Bruintjes, R., Bull. Am. Meteorol. Soc., 1999, vol. 80, p. 805.CrossRefGoogle Scholar
  6. 6.
    Pruppacher, H.R. and Klett, J.D., Microphysics of Clouds and Precipitation, Dordrecht: Kluwer Academic, 1997.Google Scholar
  7. 7.
    Hegg, D.A. and Baker, M.B., Rep. Prog. Phys., 2009, vol. 72, p. 056801.CrossRefGoogle Scholar
  8. 8.
    Deller, R.C., Vatish, M., Mitchell, D.A., and Gibson, M.I., Nat. Commun., 2014, vol. 5, p. 3244.CrossRefGoogle Scholar
  9. 9.
    Bakhanova, R.A., Kiselev, V.I., Kuku, E.I., Kim, N.S., and Shkodkin, A.V., in Tr. UkrNIGMI, Bakhanova, R.A., and Osokina, I.N., Eds., Moscow: Gidrometeoizdat, 1991, no. 242, p. 102.Google Scholar
  10. 10.
    Sakong, S., Forster-Tonigold, K., and Groß, A., J. Chem. Phys., 2016, vol. 144, p. 19470.CrossRefGoogle Scholar
  11. 11.
    Naderian, M. and Groß, A., J. Chem. Phys., 2016, vol. 145, p. 094703.CrossRefGoogle Scholar
  12. 12.
    Zheng, T., Wu, C., Chen, M., Zhang, Y., and Cummings, P.T., J. Chem. Phys., 2016, vol. 145, p. 044702.CrossRefGoogle Scholar
  13. 13.
    Seenivasan, H. and Tiwari, A.K., J. Chem. Phys., 2014, vol. 140, p. 174704.CrossRefGoogle Scholar
  14. 14.
    Futera, Z. and English, N.J., J. Chem. Phys., 2016, vol. 145, p. 204706.CrossRefGoogle Scholar
  15. 15.
    Billman, C.R., Wang, Y., and Cheng, H.-P., J. Chem. Phys., 2016, vol. 144, p. 064701.CrossRefGoogle Scholar
  16. 16.
    Sosso, G.C., Tribello, G.A., Zen, A., Pedevilla, P., and Michaelides, A., J. Chem. Phys., 2016, vol. 145, p. 211927.CrossRefGoogle Scholar
  17. 17.
    Lupi, L., Peters, B., and Molinero, V., J. Chem. Phys., 2016, vol. 145, p. 211910.CrossRefGoogle Scholar
  18. 18.
    Lupi, L., Kastelowitz, N., and Molinero, V., J. Chem. Phys., 2014, vol. 141, p. C508.CrossRefGoogle Scholar
  19. 19.
    Ramirez, R., Singh, J.K., Müller-Plathe, F., and Böhm, M.C., J. Chem. Phys., 2014, vol. 141, p. 204701.CrossRefGoogle Scholar
  20. 20.
    Khan, S. and Singh, J.K., Mol. Simul., 2014, vol. 40, p. 458.CrossRefGoogle Scholar
  21. 21.
    Lupi, L., Hudait, A., and Molinero, V., J. Am. Chem. Soc., 2014, vol. 136, p. 3156.CrossRefGoogle Scholar
  22. 22.
    Lupi, L. and Molinero, V., J. Phys. Chem. A, 2014, vol. 118, p. 7330.CrossRefGoogle Scholar
  23. 23.
    Ho, T.A. and Striolo, A., Mol. Simul., 2014, vol. 40, p. 1190.CrossRefGoogle Scholar
  24. 24.
    Kobayashi, K., Liang, Y., Sakka, T., and Matsuoka, T., J. Chem. Phys., 2014, vol. 140, p. 144705.CrossRefGoogle Scholar
  25. 25.
    Shevkunov, S.V., Dokl., 2013, vol. 449, p. 402.Google Scholar
  26. 26.
    Shevkunov, S.V., Colloid J., 2013, vol. 75, p. 444.CrossRefGoogle Scholar
  27. 27.
    Fraux, G. and Doye, J.P.K., J. Chem. Phys., 2014, vol. 141, p. 216101.CrossRefGoogle Scholar
  28. 28.
    Glatz, B. and Sarupria, S., J. Chem. Phys., 2016, vol. 145, p. 211924.CrossRefGoogle Scholar
  29. 29.
    Zielke, S.A., Bertram, A.K., and Patey, G.N., J. Phys. Chem. B, 2015, vol. 119, p. 9049.CrossRefGoogle Scholar
  30. 30.
    Zielke, S.A., Bertram, A.K., and Patey, G.N., J. Phys. Chem. B, 2016, vol. 120, p. 2291.CrossRefGoogle Scholar
  31. 31.
    Shevkunov, S.V., Dokl., 2010, vol. 433, p. 761.Google Scholar
  32. 32.
    Shevkunov, S.V., JETP, 2009, vol. 109, p. 237.CrossRefGoogle Scholar
  33. 33.
    Shevkunov, S.V., JETP., 2009, vol. 135, p. 510.Google Scholar
  34. 34.
    Vonnegut, B., J. Appl. Phys., 1947, vol. 18, p. 593.CrossRefGoogle Scholar
  35. 35.
    Yu, H.S., Li, S.L., and Truhlar, D.G., J. Chem. Phys., 2016, vol. 145, p. 130901.CrossRefGoogle Scholar
  36. 36.
    Kolb, M.J., Calle-Vallejo, F., Juurlink, L.B.F., and Koper, M.T.M., J. Chem. Phys., 2014, vol. 140, p. 134708.CrossRefGoogle Scholar
  37. 37.
    Pedroza, L.S., Poissier, A., and Fernandez-Serra, M.-V., J. Chem. Phys., 2015, vol. 142, p. 034706.CrossRefGoogle Scholar
  38. 38.
    Jin, Y. and Bartlett, R.J., J. Chem. Phys., 2016, vol. 145, p. 034107.CrossRefGoogle Scholar
  39. 39.
    Wu, D.-Y., Duan, S., Liu, X.-M., Xu, Y.-C., Jiang, Y.-X., Ren, B., Xu, X., Lin, S.H., and Tian, Z.-Q., J. Phys. Chem. A, 2008, vol. 112, p. 1313.CrossRefGoogle Scholar
  40. 40.
    Fernandez-Serra, M.V., Ferlat, G., and Artacho, E., Mol. Simul., 2005, vol. 31, p. 361.CrossRefGoogle Scholar
  41. 41.
    Burke, K., Cancio, A., Gould, T., and Pittalis, S., J. Chem. Phys., 2016, vol. 145, p. 054112.CrossRefGoogle Scholar
  42. 42.
    Izadi, S. and Onufriev, A.V., J. Chem. Phys., 2016, vol. 145, p. 074501.CrossRefGoogle Scholar
  43. 43.
    Walton, J.R., J. Phys. Chem. A, 2016, vol. 120, p. 8347.CrossRefGoogle Scholar
  44. 44.
    Xu, W., Lan, Z., Peng, B.L., Wen, R.F., and Ma, X.H., J. Chem. Phys., 2015, vol. 142, p. 054701.CrossRefGoogle Scholar
  45. 45.
    Terranova, U. and De Leeuw, N.H., J. Chem. Phys., 2016, vol. 144, p. 094706.CrossRefGoogle Scholar
  46. 46.
    Bone, S.E., Bargar, J.R., and Sposito, G., Environ. Sci. Technol., 2014, vol. 48, p. 10681.CrossRefGoogle Scholar
  47. 47.
    Hyun, S.P., Davis, J.A., Sun, K., and Hayes, K.F., Environ. Sci. Technol., 2012, vol. 46, p. 3369.CrossRefGoogle Scholar
  48. 48.
    Wu, Y., Tepper, H.L., and Voth, G.A., J. Chem. Phys., 2006, vol. 124, p. 024503.CrossRefGoogle Scholar
  49. 49.
    Cox, S.J., Kathmann, S.M., Slater, B., and Michaelides, A., J. Chem. Phys., 2015, vol. 142, p. 184704.CrossRefGoogle Scholar
  50. 50.
    Cox, S.J., Kathmann, S.M., Slater, B., and Michaelides, A., J. Chem. Phys., 2015, vol. 142, p. 184705.CrossRefGoogle Scholar
  51. 51.
    Shevkunov, S.V., Russ. J. Phys. Chem., 2007, vol. 81, p. 2047.CrossRefGoogle Scholar
  52. 52.
    Shevkunov, S.V., Dokl., 2011, vol. 438, p. 752.Google Scholar
  53. 53.
    Shevkunov, S.V., Colloid J., 2012, vol. 74, p. 589.CrossRefGoogle Scholar
  54. 54.
    Shevkunov, S.V., Russ. J. Phys. Chem., 2013, vol. 87, p. 1654.CrossRefGoogle Scholar
  55. 55.
    Shevkunov, S.V., Zh. Fiz. Khim., 2005, vol. 79, p. 1860.Google Scholar
  56. 56.
    Shevkunov, S.V., Colloid J., 2006, vol. 68, p. 370.CrossRefGoogle Scholar
  57. 57.
    Shevkunov, S.V., Colloid J., 2007, vol. 69, p. 380.Google Scholar
  58. 58.
    Shevkunov, S.V., JETP, 2008, vol. 107, p. 965.CrossRefGoogle Scholar
  59. 59.
    Shevkunov, S.V., Colloid J., 2014, vol. 76, p. 221.CrossRefGoogle Scholar
  60. 60.
    Shevkunov, S.V., High Temp., 2015, vol. 53, p. 259.CrossRefGoogle Scholar
  61. 61.
    Shevkunov, S.V., Colloid J., 2014, vol. 76, p. 240.CrossRefGoogle Scholar
  62. 62.
    Hu, X.L. and Michaelides, A., Surf. Sci., 2008, vol. 602, p. 960.CrossRefGoogle Scholar
  63. 63.
    Reinhardt, A. and Doye, J.P.K., J. Chem. Phys., 2014, vol. 141, p. 084501.CrossRefGoogle Scholar
  64. 64.
    Moustafa, S.G., Schultz, A.J., and Kofke, D.A., J. Chem. Phys., 2013, vol. 139, p. 084105.CrossRefGoogle Scholar
  65. 65.
    Abascal, J.L.F. and Vega, C., J. Chem. Phys., 2005, vol. 123, p. 234505.CrossRefGoogle Scholar
  66. 66.
    Parrinello, M., Rahman, A., and Vashishta, P., Phys. Rev. Lett., 1983, vol. 50, p. 1073.CrossRefGoogle Scholar
  67. 67.
    Abascal, J.L.F., Sanz, E., Fernandez, G.R., and Vega, C., J. Chem. Phys., 2005, vol. 122, p. 234511.CrossRefGoogle Scholar
  68. 68.
    Hale, B.N. and Kiefer, J., J. Chem. Phys., 1980, vol. 73, p. 923.CrossRefGoogle Scholar
  69. 69.
    Xu, W., Lan, Z., Peng, B.L., Wen, R.F., and Ma, X.H., J. Chem. Phys., 2015, vol. 142, p. 054701.CrossRefGoogle Scholar
  70. 70.
    Wang, C., Lu, H., Wang, Z., Xiu, P., Zhou, B., Zuo, G., Wan, R., Hu, J., and Fang, H., Phys. Rev. Lett., 2009, vol. 103, p. 137801.CrossRefGoogle Scholar
  71. 71.
    Meloni, S., Giacomello, A., and Casciola, C.M., J. Chem. Phys., 2016, vol. 145, p. 211802.CrossRefGoogle Scholar
  72. 72.
    Svoboda, M., Malijevsky, A., and Lisal, M., J. Chem. Phys., 2015, vol. 143, p. 104701.CrossRefGoogle Scholar
  73. 73.
    Murray, B., O’Sullivan, D., Atkinson, J., and Webb, M., Chem. Soc. Rev., 2012, vol. 41, p. 6519.CrossRefGoogle Scholar
  74. 74.
    Sanz, E., Vega, C., Espinosa, J.R., Caballero-Bernal, R., Abascal, J.L.F., and Valeriani, C., J. Am. Chem. Soc., 2013, vol. 135, p. 15008.CrossRefGoogle Scholar
  75. 75.
    Shevkunov, S.V., Lukyanov, S.I., Leyssale, J.-M., and Millot, C., Chem. Phys., 2005, vol. 310, p. 97.CrossRefGoogle Scholar
  76. 76.
    Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Chem. Phys., 2007, vol. 332, p. 188.CrossRefGoogle Scholar
  77. 77.
    Shevkunov, S.V., Colloid J., 2016, vol. 78, p. 121.CrossRefGoogle Scholar
  78. 78.
    Shevkunov, S.V., Colloid J., 2005, vol. 67, p. 497.CrossRefGoogle Scholar
  79. 79.
    Shevkunov, S.V., Colloid. J., 2006, vol. 68, p. 357.CrossRefGoogle Scholar
  80. 80.
    Shevkunov, S.V., Colloid J., 2006, vol. 68, p. 632.CrossRefGoogle Scholar
  81. 81.
    Shevkunov, S.V., Russ. J. Phys. Chem., 2006, vol. 80, p. 769.CrossRefGoogle Scholar
  82. 82.
    Kuznetsov, G.V., Feoktistov, D.V., Orlova, E.G., and Batishcheva, K.A., Colloid J., 2016, vol. 78, p. 335.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Peter the Great St. Petersburg State Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations