Russian Journal of Nondestructive Testing

, Volume 54, Issue 1, pp 37–43 | Cite as

Acoustic Evaluation of the Stress-Strained State of Welded Carbon Steel Joints after Different Modes of Heat Input

  • A. N. Smirnov
  • V. L. Knyazkov
  • N. V. Abakov
  • E. A. Ozhiganov
  • N. A. Koneva
  • N. A. Popova
Acoustic Methods
  • 6 Downloads

Abstract

The following problems are being solved within the framework of the “Long-Term Development Program of the Russian Coal Industry for the Period of up to 2030”: the modernization and renewal of coal production facilities and achieving the world standards of industrial security. The article is dedicated to the problems of evaluating the possibility of determining the stress-stained state (SSS) of the new elements of mining equipment in heat affected zones by acoustic and electron-microscope investigation.

Keywords

reliability stress-stained state welded joints inspection methods mining equipment new technologies of effective field development 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    FNP v oblasti promyshlennoi bezopasnosti Pravila promyshlennoi bezopasnosti opasnykh proizvodstvennykh ob”ektov, na kotorykh ispol’zuetsya oborudovanie, rabotayushchee pod izbytochnym davleniem p. 415. Seriya 20. Vypusk 16 (Federal National Program in the Area of Industrial Safety of Hazardous Industrial Objects with Equipment Operating under Excess Pressure. Item 415. Series 20. Issue 16), Moscow: ZAO “Nauchn.-Tekh. Tsentr Issled. Probl. Prom. Bezop.”, 2014.Google Scholar
  2. 2.
    Makhutov, N.A. and Reznikov, D.O., Comparative assessment of normative and risk-management–based approaches to evaluating the security of complex technical systems, Probl. Mashinostr. Nadezhnosti Mash., 2011, no. 6, pp. 92–98.Google Scholar
  3. 3.
    Butusov, D.S., Repin, D.G., Perov, S.L., and Chuvil’deev, V.N., Monitoring and management of stressstrained state of industrial pipelines at compressor stations as means of lowering the risk of accidents due to flaws caused by stress corrosion cracking, Probl. Sbora Podgot. Transp. Nefti Nefteprod., 2013, no. 3 (93), pp. 88–97.Google Scholar
  4. 4.
    Osipov, K.O., Zagidulin, T.R., and Zagidulin, R.V., Comprehensive testing of stress-strained state of large-size metal constructions based on acoustic-emission and magnetic methods of nondestructive testing, Sb. nauchn. tr. Mezhdunar. nauchno-prakt. konf. “Real’nost’, summa informatsionnykh tekhnologii” (Proc. Int. Sci. Pract. Conf. “Reality—the Sum of Information Technologies”), 2015, pp. 125–129.Google Scholar
  5. 5.
    Zagidulin, T.R., Research and development of the method for local magnetic inspection of stress-strained state of metal in elements of cased equipment and metal constructions, Cand. Sci. (Eng.) Dissertation, Sci.-Res. Inst. Instroscopy MNPO “SPEKTR”, Moscow, 2015.Google Scholar
  6. 6.
    Zagidulin, R.V., Zagidulin, T.R., Aminev, A.F., Osipov, K.O., and Kagarmanov, A.V., Experimental study of matched, planar, stress-strained state of metal in the samples of a steel pipe based on magnetic diagnostic parameters, Neftegazov. Delo, 2016, vol. 14, no. 4, pp. 142–150.Google Scholar
  7. 7.
    Murav'ev, V.V., Volkova, L.V., and Balobanov, E.N., Estimation of residual stresses in locomotive wheel treads using the acoustoelasticity method, Russ. J. Nondestr. Test., 2013, vol. 49, no. 7, pp. 382–386.CrossRefGoogle Scholar
  8. 8.
    Makhutov, N.A. and Gadenin, M.M., Tekhnicheskaya diagnostika ostatochnogo resursa i bezopasnosti (Technichal Diagnostics of Residual Service Life and Safety), Moscow: Spektr, 2011.Google Scholar
  9. 9.
    Lifshits, L.S. and Khakimov, A.N., Metallovedenie svarki i termicheskaya obrabotka svarnykh soedinenii (Physical Metallurgy of Welding and Thermal Treatment of Welded Joints), Moscow: Mashinostroenie, 1989.Google Scholar
  10. 10.
    Smirnov, A.N., Ababkov, N.V., Murav’ev, V.V., and Fol’mer, S.V., Criteria for the evaluation of the technical state of the long-lived metal of HPP equipment based on acoustic structuroscopy, Russ. J. Nondestr. Test., 2015, vol. 51, no. 2, pp. 94–100.CrossRefGoogle Scholar
  11. 11.
    Uglov, A.L., Erofeev, V.I., and Smirnov, A.N., Akusticheskii kontrol' oborudovaniya pri izgotovlenii i ekspluatatsii (Acoustic Testing of Equipment in Production and Operation), Moscow: Nauka, 2009.Google Scholar
  12. 12.
    Smirnov, A.N., Kozlov, E.V., Knyaz’kov, V.L., Ababkov, N.V., and Ozhiganov, E.A., Effect of carbon-steel welding mode on the amplitude of internal stress fields and the structural-phase state in fusion-line zone, Deform. Razrushenie, 2017, no. 6, pp. 28–33.Google Scholar
  13. 13.
    Aleshin, N.P., Gladkov, E.A., Kuznetsov, P.S., Brodyagin, V.N., Kopoteva, E.N., and Sholokhov, M.A., Pulsed technologies for controlling drop transfer in MIG/MAG welding, Svarka Diagn., 2014, no. 3, pp. 43–47.Google Scholar
  14. 14.
    Knyaz’kov, V.L. and Knyaz’kov, A.F., Povyshenie effektivnosti ruchnoi dugovoi svarki truboprovodov (Improving the Efficiency of Manual Arc Welding of Pipelines), Kemerovo: GU KuzGTU, 2008.Google Scholar
  15. 15.
    Knyaz’kov, A.F., Knyaz’kov, S.A., and Knyaz’kov, V.L., A method for electric-arc welding with pulsed current modulation, RF Patent No. 2268809, Byull. Izobret., 2006, no.3.Google Scholar
  16. 16.
    Ivanov, V.I. and Belov, V.M., Akustiko-emissionnyi kontrol' svarki i svarnykh soedinenii (Acoustic-Emission Testing of Welding and Welded Joints), Moscow: Mashinostroenie, 1981.Google Scholar
  17. 17.
    Kozlov, E.V. and Koneva, N.A., The nature of substructural strengthening, Izv. Vyssh. Uchebn. Zaved., Fiz., 1982, no. 8, pp. 3–14.Google Scholar
  18. 18.
    Kozlov, E.V., Lychagin, D.V., Popova, N.A., Trishkina, L.I., and Koneva, N.A., Long-range stress fields and their role in the deformation of structurally inhomogeneous materials, in Fizika prochnosti geterogennykh materialov (Physics of Strength of Heterogeneous Materials), Leningrad: FTI, 1988, pp. 3–13.Google Scholar
  19. 19.
    Smirnov, A.N., Murav’ev, V.V., and Ababkov, N.V., Razrushenie i diagnostika metallov (Failure and Diagnostics of Metals), Moscow-Kemerovo: Innovatsionnoe Mashinostroenie, 2016.Google Scholar
  20. 20.
    Vladimirov, V.I., Fizicheskaya teoriya prochnosti i plastichnosti. Tochechnye defekty. Uprochnenie i vozvrat (Physical Theory of Strength and Plasticity. Point Defects. Strengthening and Recovery), Leningrad: LPI, 1975.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. N. Smirnov
    • 1
    • 2
  • V. L. Knyazkov
    • 1
  • N. V. Abakov
    • 1
  • E. A. Ozhiganov
    • 1
  • N. A. Koneva
    • 3
  • N. A. Popova
    • 3
  1. 1.Kuzbass State Technical UniversityKemerovoRussia
  2. 2.Institute of Coal, Siberian Branch of the Russian Academy of SciencesKemerovoRussia
  3. 3.Tomsk State University of Architecture and BuildingTomskRussia

Personalised recommendations