Advertisement

Pattern Recognition and Image Analysis

, Volume 28, Issue 4, pp 747–757 | Cite as

Variance Based Brightness Preserved Dynamic Histogram Equalization for Image Contrast Enhancement

  • Krishna Gopal Dhal
  • Arunita Das
  • Nabin Ghoshal
  • Sanjoy Das
Representation, Processing, Analysis, and Understanding of Images

Abstract

This paper proposes a novel variant of Brightness Preserving Dynamic Histogram Equalization (BPDHE) having more brightness preserving capability with less computational time. This variant, called Variance based Brightness Preserve Dynamic Histogram Equalization (VBBPDHE) uses the interclass and intraclass variance information to segment out the histogram recursively. This variant does not need the smoothing operation of input histogram and also no need to compute local maxima or minima to segment out the histogram unlike BPDHE. Visual analysis, quality metrics and execution time clearly demonstrate the efficiency of the proposed VBBPDHE over well-known existing methods.

Keywords

histogram equalization variance brightness preservation image contrast enhancement color 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd edn. (Prentice Hall, New York 2002).Google Scholar
  2. 2.
    S.–D. Chen and A. R. Ramli, “Preserving brightness in histogram equalization based contrast enhancement techniques,” Digital Signal Process. 14 (5), 413–428 (2004).CrossRefGoogle Scholar
  3. 3.
    Y. T. Kim, “Contrast enhancement using brightness preserving bi–histogram equalization,” IEEE Trans. Consum. Electron. 43 (1), 1–8 (1997).CrossRefGoogle Scholar
  4. 4.
    H. D. Cheng and X. J. Shi, “A simple and effective histogram equalization approach to image enhancement,” Digital Signal Process. 14 (2), 158–170 (2004).CrossRefGoogle Scholar
  5. 5.
    S.–D. Chen and A. R. Ramli, “Minimum mean brightness error bi–histogram equalization in contrast enhancement,” IEEE Trans. Consum. Electron. 49 (4), 1310–1319 (2003).CrossRefGoogle Scholar
  6. 6.
    S.–D. Chen and A. R. Ramli, “Contrast enhancement using recursive mean–separate histogram equalization for scalable brightness preservation,” IEEE Trans. Consum. Electron. 49 (4), 1301–1309 (2003).CrossRefGoogle Scholar
  7. 7.
    Q. Wang and R. K. Ward, “Fast image/video contrast enhancement based on weighted thresholded histogram equalization,” IEEE Trans. Consum. Electron. 53 (2), 757–764 (2007).CrossRefGoogle Scholar
  8. 8.
    N. Sengee and H. K. Choi, “Brightness preserving weight clustering histogram equalization,” IEEE Trans. Consum. Electron. 54 (3), 1329–1337 (2008).CrossRefGoogle Scholar
  9. 9.
    M. Kim and M. G. Chung, “Recursively separated and weighted histogram equalization for brightness preservation and contrast enhancement,” IEEE Trans. Consum. Electron. 54 (3), 1389–1397 (2008).CrossRefGoogle Scholar
  10. 10.
    T. Kim and J. Paik, “Adaptive contrast enhancement using gain–controllable clipped histogram equalization,” IEEE Trans. Consum. Electron. 54 (4), 1803–1810 (2008).CrossRefGoogle Scholar
  11. 11.
    P. Shanmugavadivu, K. Balasubramanian, and A. Muruganandam, “Particle swarm optimized bi–histogram equalization for contrast enhancement and brightness preservation of images,” Vis. Comput. 30 (4), 387–399 (2014).CrossRefGoogle Scholar
  12. 12.
    K. S. Sim, C. P. Tso, and Y. Y. Tan, “Recursive subimage histogram equalization applied to gray scale images,” Pattern Recogn. Lett. 28 (10), 1209–1221 (2007).CrossRefGoogle Scholar
  13. 13.
    K. Wongsritong, K. Kittayaruasiriwat, F. Cheevasuvit, K. Dejhan, and A. Somboonkaew, “Contrast enhancement using multipeak histogram equalization with brightness preserving,” in Proc. IEEE APCCAS 1998, 1998 IEEE Asia–Pacific Conference on Circuit and Systems (Chiangmai, Thailand, Nov. 24–27, 1998), pp. 455–458.Google Scholar
  14. 14.
    H. Ibrahim and N. S. P. Kong, “Brightness preserving dynamic histogram equalization for image contrast enhancement,” IEEE Trans. Consum. Electron. 53 (4), 1752–1758 (2007).CrossRefGoogle Scholar
  15. 15.
    M. Abdullah–Al–Wadud, Md. H. Kabir, M. A. A. Dewan, and O. Chae, “A dynamic histogram equalization for image contrast enhancement,” IEEE Trans. Consum. Electron. 53 (2), 593–600 (2007).CrossRefGoogle Scholar
  16. 16.
    D. Sheet, H. Garud, A. Suveer, M. Mahadevappa, and J. Chatterjee, “Brightness preserving dynamic fuzzy histogram equalization,” IEEE Trans. Consum. Electron. 56 (4), 2475–2480 (2010).CrossRefGoogle Scholar
  17. 17.
    K. G. Dhal and S. Das, “Local search based dynamically adapted Bat Algorithm in image enhancement domain,” Int. J. Comput. Sci. Math. (in press).Google Scholar
  18. 18.
    C. Zuo, A. Chen, and X. Sui, “Range limited Bi–Histogram Equalization for image contrast enhancement,” Optik–Int. J. Light Electron Opt. 124 (5), 425–431 (2013).CrossRefGoogle Scholar
  19. 19.
    N. Otsu, “A threshold selection method from gray–level histograms,” IEEE Trans. Sys. Man. Cybern. 9 (1), 62–66 (1979).CrossRefGoogle Scholar
  20. 20.
    S. Aja–Fernández, R. S. J. Estépar, C. Alberola–López, and C. F. Westin, “Image quality assessment based on local variance,” in Proc. 28th Annual Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBS) (New York, 2006), pp. 4815–4818.Google Scholar
  21. 21.
    C.–L. Chien and D.–C. Tseng, “Color image enhancement with exact HSI color model,” Int. J. Innovative Comput. Inf. Control (IJICIC) 7 (12), 6691–6710 (2011).Google Scholar
  22. 22.
    C.–L. Chien and W.–H. Tsai, “Image fusion with no gamut problem by improved nonlinear IHS transforms for remote sensing,” IEEE Trans. Geosci. Remote Sens. 52 (1), 651–663 (2014).CrossRefGoogle Scholar
  23. 23.
    N. S. P. Kong and H. Ibrahim, “Color image enhancement using brightness preserving dynamic histogram equalization,” IEEE Trans. Consum. Electron. 54 (4), 1962–1968 (2008).CrossRefGoogle Scholar
  24. 24.
    C. Gao, K. Panetta, and S. Agaian, “No reference color image quality measures,” in Proc. 2013 IEEE Int. Conf. on Cybernetics (CYBCO) (Lausanne, Switzerland, 2013), pp. 243–248.CrossRefGoogle Scholar
  25. 25.
    P. Gupta, P. Srivastava, S. Bhardwaj, and V. Bhateja, “A modified PSNR metric based on HVS for quality assessment of color images,” in Proc. 2011 Int. Conf. on Communication and Industrial Application (ICCIA) (Kolkata, India, 2011), pp. 1–4.Google Scholar
  26. 26.
    N. Ponomarenko, F. Silvestri, K. Egiazarian, M. Carli, J. Astola, and V. Lukin, “On between–coefficient contrast masking of DCT basis functions,” in CD–ROM Proc. 3rd Int. Workshop on Video Processing and Quality Metrics for Consumer Electronics (VPQM 2007) (Scottsdale, AZ, USA, 2007).Google Scholar
  27. 27.
    K. Panetta, C. Gao, and S. Agaian, “No reference color image contrast and quality measures,” IEEE Trans. Consum. Electron. 59 (3), 643–651 (2013).CrossRefGoogle Scholar
  28. 28.
    K. G. Dhal and S. Das, “Combination of histogram segmentation and modification to preserve the original brightness of the images,” Pattern Recogn. Image Anal. 27 (2), 200–212 (2017).CrossRefGoogle Scholar
  29. 29.
    K. G. Dhal, S. Sen, K. Sarkar, and S. Das, “Entropy based Range Optimized Brightness Preserved Histogram–Equalization for Image Contrast Enhancement,” Int. J. Comput. Vis. Image Process. 6 (1), 59–72 (2016).CrossRefGoogle Scholar
  30. 30.
    K. G. Dhal and S. Das, “Hue preserving color image enhancement models in RGB colour space without gamut problem,” Int. J. Signal Imaging Syst. Eng. 11 (2), 102–116 (2018).CrossRefGoogle Scholar
  31. 31.
    K. G. Dhal and S. Das, “Cuckoo search with search strategies and proper objective function for brightness preserving image enhancement,” Pattern Recogn. Image Anal. 27 (4), 695–712 (2017).CrossRefGoogle Scholar
  32. 32.
    K. G. Dhal, M. Sen, and S. Das, “Cuckoo searchbased modified Bi–Histogram Equalization method to enhance the cancerous tissues in mammography images,” Int. J. Med. Eng. Inf. 10 (2), 164–187 (2018).Google Scholar
  33. 33.
    K. G. Dhal and S. Das, “Colour retinal images enhancement using modified histogram equalization methods and firefly algorithm,” Int. J. Biomed. Eng. Technol. 28 (2), 160–184 (2018).CrossRefGoogle Scholar
  34. 34.
    K. G. Dhal, Md. I. Quraishi, and S. Das, “An improved Cuckoo Search based optimal ranged bvrightness preserved Histogram Equalization and contrast stretching method,” Int. J. Swarm Intell. Res. 8 (1), 1–29 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Krishna Gopal Dhal
    • 1
  • Arunita Das
    • 2
  • Nabin Ghoshal
    • 3
  • Sanjoy Das
    • 3
  1. 1.Dept. of Computer Science and ApplicationMidnapore College (Autonomous)Paschim MedinipurIndia
  2. 2.Dept. of Information TechnologyKalyani Govt. Engineering CollegeKalyani, NadiaIndia
  3. 3.Dept. of Engineering and Technological StudiesUniversity of KalyaniKalyani, NadiaIndia

Personalised recommendations