Pattern Recognition and Image Analysis

, Volume 28, Issue 4, pp 783–791 | Cite as

Software Tools for Statistical Analysis of Some Precipitation Characteristics

  • A. K. GorsheninEmail author
Applied Problems


The paper presents the design and implementation of software tools for statistical analysis of the real data based on the assumptions that empirical distribution can be approximated by generalized negative binomial (GNB) or generalized gamma (GG) families. Models based on GG distributions are widely applied in such practical problems as processing of synthetic-aperture radar images and speech signals, hydrological analysis and optical communications. In this paper, the GNB distributions are considered as a mixed Poisson law with the mixing GG distribution. This family could provide better fit with the different statistical data than classical negative binomial distributions that have been successfully used for analysis of precipitation events earlier. The parameter estimation is implemented using a functional approach, so approximations by different types of distributions are compared in sense of different metrics. The results of application of the implemented software tools are demonstrated on the example of the Potsdam precipitation events.


statistical software data analysis generalized negative binomial distributions generalized gamma distributions estimation of parameters optimization problems mixed probability models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. W. Stacy, “A generalization of the gamma distribution,” Ann. Math. Statist. 33 (3), 1187–1192 (1962).MathSciNetzbMATHGoogle Scholar
  2. 2.
    L. M. Zaks and V. Yu. Korolev, “Generalized variance gamma distributions as limit laws for random sums,” Informatika i ee Primeneniya 7 (1), 105–115 (2013) [in Russian].Google Scholar
  3. 3.
    J.–H. Chang, J. W. Shin, N. S. Kim, and S. K. Mitra, “Image probability distribution based on generalized gamma function,” IEEE Signal Process. Lett. 12 (4), 325–328 (2005).Google Scholar
  4. 4.
    H.–C. Li, W. Hong, Y.–R. Wu., and P.–Z. Fan, “On the empirical–statistical modeling of SAR images with generalized gamma distribution,” IEEE J. Sel. Top. Signal Process. 5 (3), 386–397 (2011).Google Scholar
  5. 5.
    G. Gao, X. Qin, and S. Zhou, “Modeling SAR images based on a generalized gamma distribution for texture component,” Prog. Electromagn. Res. (PIER) 137, 669–685 (2013).Google Scholar
  6. 6.
    X. Qin, S. Zhou, and H. Zou, “SAR image segmentation via hierarchical region merging and edge evolving with generalized gamma distribution,” IEEE Geosci. Remote Sens. Lett. 11 (10), 1742–1746 (2014).Google Scholar
  7. 7.
    X. Qin, H. Zou, S. Zhou, and K. Ji, “Region–based classification of SAR images using kullback–leibler distance between generalized gamma distributions,” IEEE Geosci. Remote Sens. Lett. 12 (8), 1655–1659 (2015).Google Scholar
  8. 8.
    H. Sportouche, J.–M. Nicolas, and F. Tupin, “Mimic capacity of Fisher and generalized gamma distributions for high–resolution SAR image statistical modeling,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10 (12), 5695–5711 (2017).Google Scholar
  9. 9.
    G. Gao, K. Ouyang, Y. Luo, S. Liang, and S. Zhou, “Scheme of parameter estimation for generalized gamma distribution and its application to ship detection in SAR images,” IEEE Trans. Geosci. Remote Sens. 55 (3), 1812–1832 (2017).Google Scholar
  10. 10.
    W. Zhao, J. Li, X. Yang, Q. Peng, and J. Wang, “Innovative CFAR detector with effective parameter estimation method for generalised gamma distribution and iterative sliding window strategy,” IET Image Process. 12 (1), 60–69 (2018).Google Scholar
  11. 11.
    K.–S. Song, “Globally convergent algorithms for estimating generalized gamma distributions in fast signal and image processing,” IEEE Trans. Image Process. 17 (8), 1233–1250 (2008).MathSciNetGoogle Scholar
  12. 12.
    H.–C. Li, W. Hong, Y.–R. Wu., and P.–Z. Fan, “An efficient and flexible statistical model based on generalized gamma distribution for amplitude SAR images,” IEEE Trans. Geosci. Remote Sens. 48 (6), 2711–2722 (2010).Google Scholar
  13. 13.
    H.–C. Li, W. Hong, Y.–R. Wu, and P.–Z. Fan, “Bayesian wavelet shrinkage with heterogeneity–adaptive threshold for SAR image despeckling based on generalized gamma distribution,” IEEE Trans. Geosci. Remote Sens. 51 (4), 2388–2402 (2013).Google Scholar
  14. 14.
    J. W. Shin, J.–H. Chang, and N. S. Kim, “Statistical modeling of speech signals based on generalized gamma distribution,” IEEE Signal Process. Lett. 12 (3), 258–261 (2005).Google Scholar
  15. 15.
    G. Almpanidis and C. Kotropoulos, “Phonemic segmentation using the generalised Gamma distribution and small sample Bayesian information criterion,” Speech Commun. 50 (1), 38–55 (2008).Google Scholar
  16. 16.
    A. N. F. der Maur, “Statistical tools for drop size distributions: Moments and generalized gamma,” J. Atmos. Sci. 58 (4), 407–418 (2001).Google Scholar
  17. 17.
    M. Lecompte and C. Dumouchel, “On the capability of the generalized gamma function to represent spray drop–size distribution,” Part. Part. Syst. Charact. 25 (2), 154–167 (2008).Google Scholar
  18. 18.
    S. Nadarajah and A. K. Gupta, “Statistical tools for drop size distributions: Moments and generalized gamma,” Math. Comput. Simul. 74 (1), 1–7 (2007).Google Scholar
  19. 19.
    X. Xie, and X. Liu, “Analytical three–moment autoconversion parameterization based on generalized gamma distribution,” J. Geophys. Res.: Atmos. 114 (D17), D17201 (2009).Google Scholar
  20. 20.
    L. Chen, V. P. Singh, and F. Xiong, “An entropy–based generalized gamma distribution for flood frequency analysis,” Entropy 19 (6), 239 (2017).Google Scholar
  21. 21.
    Y. Kopsinis, J. S. Thompson, and B. Mulgrew, “Systemindependent threshold and BER estimation in optical communications using the extended generalized gamma distribution,” Opt. Fiber Technol. 13 (1), 39–45 (2007).Google Scholar
  22. 22.
    L. Zaninetti, “The luminosity function of galaxies as modeled by the generalized gamma distribution,” Acta Phys. Pol., B 41 (4), 729–751 (2010).Google Scholar
  23. 23.
    Y. Zhou and H. Zhu, “Image segmentation using a trimmed likelihood estimator in the asymmetric mixture model based on generalized gamma and Gaussian distributions,” Math. Probl. Eng. 2018, Paper ID 3468967 (2018).Google Scholar
  24. 24.
    V. Yu. Korolev, A. V. Chertok, A. Yu. Korchagin, and A. I. Zeifman, “Modeling high–frequency order flow imbalance by functional limit theorems for two–sided risk processes,” Appl. Math. Comput. 253, 224–241 (2015).MathSciNetzbMATHGoogle Scholar
  25. 25.
    V. Yu. Korolev, A. K. Gorshenin, S. K. Gulev, K. P. Belyaev, A. A. Grusho, “Statistical analysis of precipitation events,” AIP Conf. Proc. 1863, 090011 (2017).Google Scholar
  26. 26.
    A. K. Gorshenin, “On some mathematical and programming methods for construction of structural models of information flows,” Informatika i ee Primeneniya 11 (1), 58–68 (2017) [in Russian].Google Scholar
  27. 27.
    V. Yu. Korolev and A. K. Gorshenin, “The probability distribution of extreme precipitation,” Dokl. Earth Sci. 477 (2), 1461–1466 (2017).MathSciNetGoogle Scholar
  28. 28.
    V. Yu. Korolev and A. I. Zeifman, “GG–mixed Poisson distributions as mixed geometric laws and related limit theorems,” arXiv preprint arXiv:1703.07276v2 (2017). Scholar
  29. 29.
    A. K. Gorshenin and V. Yu. Korolev, “A functional approach to estimation of the parameters of generalized negative binomial and gamma distributions,” Commun. Comput. Inf. Sci. 919, 353–364 (2018).Google Scholar
  30. 30.
    P.–H. Huang and T. Y. Hwang, “On new moment estimation of parameters of the generalized gamma distribution using it’s characterization,” Taiwanese J. Math. 10 (4), 1083–1093 (2006).MathSciNetzbMATHGoogle Scholar
  31. 31.
    D. Freedman and P. Z. Diaconis, “On the histogram as a density estimator: theory,” Z. Wahrscheinlichkeitstheorie Verw. Gebiete 57 (4), 453–476 (1981).MathSciNetzbMATHGoogle Scholar
  32. 32.
    J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–L2 Mead simplex method in low dimensions,” SIAM J. Optim. 9 (1), 112–147 (1998).zbMATHGoogle Scholar
  33. 33.
    A. Gorshenin and V. Kuzmin, “Online system for the construction of structural models of information flows,” in Proc. 2015 7th Int. Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) (Brno, Czech Republic, 2015), pp. 216–219.Google Scholar
  34. 34.
    A. K. Gorshenin and V. Yu. Kuzmin, “Research support system for stochastic data processing,” Pattern Recogn. Image Anal. 27 (3), 518–524 (2017).Google Scholar
  35. 35.
    A. Gorshenin and V. Korolev, “Modelling of statistical fluctuations of information flows by mixtures of gamma distributions”, in Proc. 27th European Conf. on Modelling and Simulation (ECMS 2013) (Aalesund, Norway, 2013), pp. 569–572.Google Scholar
  36. 36.
    A. K. Gorshenin, “Pattern–based analysis of probabilistic and statistical characteristics of precipitations,” Informatika i ee Primeneniya, 11 (4), 38–46 (2017) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Informatics ProblemsFederal Research Center “Computer Science and Control” of the Russian Academy of SciencesMoscowRussia
  2. 2.Faculty of Computational Mathematics and CyberneticsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations