Physical Mesomechanics

, Volume 22, Issue 1, pp 13–17 | Cite as

A New Model of the Electron Gas Effect on the Thermoacoustics of Conductors under Laser Irradiation

  • N. F. MorozovEmail author
  • K. L. Muratikov
  • D. A. Indeitsev
  • D. S. Vavilov
  • B. N. Semenov


A two-component model which accounts for electron gas pressure is proposed for describing the dynamics of thermoelastic and thermoacoustics effects in laser-irradiated conductors. The model medium represents two interpenetrating continua such that interacting particles of both exist at each point of the medium. The electron gas in the model comprises free and bound electrons of which the former obey the laws for perfect metals and the latter obey those that account for electron trapping to localized levels and for electron transitions from level to level, i.e., for jump diffusion and hopping conductivity. Unlike the classical model of thermoelasticity, the proposed model is the first to show that the electron gas pressure depends strongly on the temperature difference between the electron gas and the conductor lattice and on the change in the density of free electrons as localized species become free by the Mott mechanism. The duration of acoustic pulses in the conductor lattice is essentially dependent on the time of laser irradiation and on how long the gas and the lattice differ in temperature, with the longest acoustic pulse falling on a certain localized electron density. The model data are compared with experiments.


thermoelasticity thermoacoustics two-component model dynamic behavior laser irradiation conductors electron gas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Khafizov, M., Pakarinen, J., He, L., Henderson, H.B., Manuel, M.V., Nelson, A.T., Jaques, B.J., Butt, D.P., and Hurley, D.H., Subsurface Imaging of Grain Microstructure Using Picosecond Ultrasonics, Acta Mater., 2016, vol. 112, pp. 209–2015. doi 10.1016/j.actamat.2016.04.003CrossRefGoogle Scholar
  2. 2.
    Danilovskyay, V.I., Thermal Stresses in an Elastic Half–Space Due to Sudden Heating of Its Boundary, Prikl. Mat. Mekh., 1950, vol. 14, no. 3, pp. 316–318.Google Scholar
  3. 3.
    Danilovskaya, V.I., Temperature Field and Stresses Produced in an Elastic Half–Space by a Radiant Energy Flux Incident on Its Boundary, Izv. Akad. NaukSSSR, Mekh. Mashinostr., 1959, no. 3, pp. 129–132.MathSciNetGoogle Scholar
  4. 4.
    Vovnenko, N.V., Zimin, B.A., and Sud'enkov, Yu.V., Experimental Study of Thermoelastic Stresses in Heat–Conducting and Non–Heat–Conducting Solids under Submicrosecond Laser Heating, Tech. Phys., 2011, vol. 56, no. 6, pp. 803–808.CrossRefGoogle Scholar
  5. 5.
    Sudenkov, Yu.V. and Zimin, B.A., Effect of "the Thermal Piston" in a Dynamic Thermoelastic Problem, Int. J. Heat Mass Transfer., 2015, vol. 85, pp. 781–786. doi 10.1016/j.ijheatmasstransfer.2015.01.119CrossRefGoogle Scholar
  6. 6.
    Gurevich, S.Yu. and Petrov, Yu.V., Laser Generation and Electromagnetic Detection of Normal Acoustic Waves in Ferromagnetic Metals, Tech. Phys., 2016, vol. 61, no. 3, pp. 432–435.CrossRefGoogle Scholar
  7. 7.
    Vega–Flick, A., Eliason, J.K., Maznev, A.A., Khanolkar, A., Abi Ghanem, M., Boechler, N., Alvarado–Gil, J.J., and Nelson, K.A., Laser–Induced Transient Grating Setup with Continuously Tunable Period, Rev. Sci. Instrum., 2015, vol. 86, p. 123101. doi 10.1103/PhysRevB. 94.214106Google Scholar
  8. 8.
    Matsuda, O., Larciprete, M.C., Voti, R.L., and Wright, O.B., Fundamentals of Picosecond Laser Ultrasonics, Ultrasonics, 2014, vol. 56, pp. 3–20. doi 10.1016/j.ultras.2014. 06.005CrossRefGoogle Scholar
  9. 9.
    Rublack, T. and Seifert, G., Femtosecond Laser Delamination of Thin Transparent Layers from Semiconducting Substrates, Opt. Mater. Express., 2011, vol. 1, no. 4, pp. 543–550. doi 10.1364/OME.1.000543ADSCrossRefGoogle Scholar
  10. 10.
    Barenblatt, G.I. and Vishik, M.I., On the Finite Speed of Propagation in the Problems of Unsteady Filtration of Fluid and Gas in a Porous Medium, Prikl. Mat. Mekh., 1956, vol. 20, no. 3, pp. 411–417.Google Scholar
  11. 11.
    Barenblatt, G.I. and Zheltov, Yu.P., On the Basic Equations of the Filtration of Homogeneous Fluids in Fissurized Rocks, Dokl. Akad. Nauk SSSR, 1960, vol. 123, no. 3, pp. 545–548.Google Scholar
  12. 12.
    Indeitsev, D.A., Naumov, V.N., Semenov, B.N., and Belyaev, A.K., Thermoelastic Waves in a Continuum with Complex Structure, ZAMM, 2008, vol. 89, no. 4, pp. 279–287. doi 10.1002/zamm.200800219ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    Abou–Chacra, R., Thouless, D.J., and Anderson, P.W., A Selfconsistent Theory of Localization, J. Phys. C. Solid State Phys., 1973, vol. 6, no. 10, pp. 1734–1752. doi 10. 1088/0022–3719/6/10/009ADSCrossRefGoogle Scholar
  14. 14.
    Cutler, M. and Mott, N.F., Observation of Anderson Localization in an Electron Gas, Phys. Rev., 1969, vol. 181, no. 3, pp. 1336–1340. doi 10.1103/PhysRev.181.1336ADSCrossRefGoogle Scholar
  15. 15.
    Landau, L.D. and Lifshits, E.M., Course of Theoretical Physics: Vol. 5. Statistical Physics, Moscow: Nauka, 1976.Google Scholar
  16. 16.
    Fabrikant, I.I. and Hotop, H., On the Validity of the Arrhenius Equation for Electron Attachment Rate Coefficients, J. Chem. Phys., 2008, vol. 128, no. 12, pp. 308–321. doi 0021–9606/2008/128_12_/124308/8CrossRefGoogle Scholar
  17. 17.
    Tzou, D.Y., Chen, J.K., and Beraun, J.E., Recent Development of Ultrafast Thermoelasticity, J. Thermal Stress., 2005, vol. 28, no. 6–7, pp. 563–594. doi 10.1080/014957 30590929359CrossRefGoogle Scholar
  18. 18.
    Al–Nimr, M.A. and Arpaci, V.S., The Thermal Behavior of Thin Metal Films in the Hyperbolic Two–Step Model, Int. J. Heat Mass Transfer., 2000, vol. 43, no. 11, pp. 2021–2028. doi 10.1016/S0017–9310(99)00160–XCrossRefzbMATHGoogle Scholar
  19. 19.
    Chowdhury, I.H. and Xu, X., Heat Transfer in Femtosecond Laser Processing of Metal, Numer. Heat Transf. A. Applicat., 2003, vol. 44, no. 3, pp. 219–232. doi 10.1080/10407780390210224ADSCrossRefGoogle Scholar
  20. 20.
    Indeitsev, D.A. and Osipova, E.V., A Two–Temperature Model of Optical Excitation of Acoustic Waves in Conductors, Dokl. Phys., 2017, vol. 62, no. 3, pp. 136–140. doi 10.7868/S0869565217080084ADSCrossRefGoogle Scholar
  21. 21.
    Farmer, D.J., Akimov, A.V., Sharp, J.S., and Kent, A.J., Quantized Phonon Modes in Loaded Polymer Films, J. Appl Phys., 2013, vol. 113, p. 033516. doi 10.1063/1.4774689ADSCrossRefGoogle Scholar
  22. 22.
    Poyser, C.L., York, W.B., Srikanthreddy, D., Glavin, B.A., Linnik, T.L., Campion, R.P., Akimov, A.V., and Kent, A.J., Phonon Spectroscopy with Chirped Shear and Compressive Acoustic Pulses, Phys. Rev. Lett., 2017, vol. 119, p. 255502. doi 10.1103/PhysRevLett.119. 255502ADSCrossRefGoogle Scholar
  23. 23.
    Eisenbach, A., Havdala, T., Delahaye, J., Grenet, T., Amir, A., and Frydman, A., Glassy Dynamics in Disordered Electronic Systems Reveal Striking Thermal Memory Effects, Phys. Rev. Lett., 2016, vol. 117, no. 11, p. 116601. doi 10.1103/PhysRevLett. 117.139901ADSCrossRefGoogle Scholar
  24. 24.
    Johnston, M.B., Whittaker, D.M., Corchia, A., Davies, A.G., and Linfield, E.H., Simulation of Terahertz Generation at Semiconductor Surfaces, Phys. Rev. B, 2002, vol. 65, no. 16, p. 165301. doi 10.1103/PhysRevB.65.165301.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. F. Morozov
    • 1
    • 2
    Email author
  • K. L. Muratikov
    • 1
    • 3
  • D. A. Indeitsev
    • 1
    • 2
  • D. S. Vavilov
    • 1
    • 4
  • B. N. Semenov
    • 1
    • 2
  1. 1.Institute for Problems in Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Saint Petersburg State UniversitySt. PetersburgRussia
  3. 3.loffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  4. 4.Mozhaisky Military Space AcademySt. PetersburgRussia

Personalised recommendations