Physical Mesomechanics

, Volume 21, Issue 6, pp 538–545 | Cite as

Selective Filtration of Fluids in Materials with Slit-Shaped Nanopores

  • A. A. Tsukanov
  • E. V. ShilkoEmail author
  • E. Gutmanas
  • S. G. Psakhie


Problems associated with a qualitative increase in the selectivity of fluid filtration remain the major challenge in a variety of areas such as fluid transport through porous materials and media, ion separation, water desalination and purification, and many others. A promising way to solve these problems is to design and develop membranes with slit-shaped nanopores. In the paper, we studied the selectivity and permeability of slitshaped nanosized pores in the natural mineral (hydroxyapatite) with the use of the nonequilibrium molecular dynamics approach with all-atom models. We showed that the subnanometer-wide slit-shaped pores in hydroxyapatite are able to demonstrate both good salt rejection and relatively high water permeability. In particular, the numerically predicted water permeability of hydroxyapatite with 0.4 nm thick slit-shaped nanopores reaches about 200 L/(m2 h bar) that is higher than that of commercial membranes and has the same order of magnitude as the theoretically predicted water permeability through single-layer MoS2 nanoporous membranes. An increase in the nanopore thickness is accompanied by a multiple growth in permeability, which is comparable with advanced 2D-CAP (2D-conjugated aromatic polymer) membranes, but in so doing the filtration selectivity is lost. The results show that nanoporous materials with the connected network of slit-shaped nanopores is a promising filter material for water treatment including seawater desalination and other important technical and environmental applications.


slit-shapednanopore fluid filtration ion rejection selectivity membrane hydroxyapatite desalination computer simulation molecular dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yamada, T. and Matsuzaki, R., Effects of Slit Width on Water Permeation through Graphene Membranes by Molecular Dynamics Simulations, Sci. Rep., 2017, vol. 8, pp. 339–1–339–9.ADSCrossRefGoogle Scholar
  2. 2.
    Rollings, R.C., Kuan, A.T., and Golovchenko, J.A., Ion Selectivity of Graphene Nanopores, Nat. Commun., 2016, vol. 7, pp. 11408–1–11408–7.ADSCrossRefGoogle Scholar
  3. 3.
    Zhang, Y., Shi, Q., Liu, Y., Wang, Y., Meng, Z., Xiao, C., Deng, K., Rao, D., and Lu, R., Hexagonal Boron Nitride with Designed Nanopores as a High–Efficiency Membrane for Separating Gaseous Hydrogen from Methane, J. Phys. Chem. C, 2015, vol. 119, pp. 19826–19831.CrossRefGoogle Scholar
  4. 4.
    Esfandiarpoor, S., Fazli, M., and Ganji, M.D., Reactive Molecular Dynamic Simulations on the Gas Separation Performance of Porous Graphene Membrane, Sci. Rep., 2017, vol. 7, pp. 16561–1–16561–12.ADSCrossRefGoogle Scholar
  5. 5.
    Moghadam, F. and Park, H.B., Two–Dimensional Materials: an Emerging Platform for Gas Separation Membranes, Current Opinion Chem. Eng., 2018, vol. 20, pp.28–38.Google Scholar
  6. 6.
    Garaj, S., Hubbard, W., Reina, A., Kong, J., Branton, D., and Golovchenko, J.A., Graphene as a Subnanometre Trans–Electrode Membrane, Nature, 2010, vol. 467, pp. 190–193.ADSCrossRefGoogle Scholar
  7. 7.
    Venkatesan, B.M. and Bashir, R., Nanopore Sensors for Nucleic Acid Analysis, Nat. Nanotech., 2011, vol. 6, pp. 615–624.ADSCrossRefGoogle Scholar
  8. 8.
    Song, S., Faleo, G., Yeung, R., Kant, R., Posselt, A.M., Desai, T.A., Tang, Q., and Roy, S., Silicon Nanopore Membrane (SNM) for Islet Encapsulation and Immu–noisolation under Convective Transport, Sci. Rep., 2016, vol. 6, pp. 23679–1–23679–9.ADSCrossRefGoogle Scholar
  9. 9.
    Inorganic, Polymeric and Composite Membranes: Structure, Function and Other Correlations, vol. 14, Oyama, S.T. and Stagg–Williams, S.M., Eds., Elsevier, 2011.Google Scholar
  10. 10.
    Lin, J. and Murad, S., A Computer Simulation Study of the Separation of Aqueous Solutions Using Thin Zeolite Membranes, Molec. Phys., 2001, vol. 99, no. 14, pp. 1175–1181.ADSCrossRefGoogle Scholar
  11. 11.
    Konatham, D., Yu, J., Ho, T. A., and Striolo, A., Simulation Insights for Graphene–Based Water Desalination Membranes, Langmuir, 2013, vol. 29, no. 38, pp. 11884 11897.CrossRefGoogle Scholar
  12. 12.
    Thomas, M. and Corry, B., A Computational Assessment of the Permeability and Salt Rejection of Carbon Nanotube Membranes and Their Application to Water Desalination, Philos. Trans. Roy. Soc. A, 2016, vol. 374, no. 2060, pp. 20150020.ADSCrossRefGoogle Scholar
  13. 13.
    Azamat, J. and Sardroodi, J.J., The Permeation of Potassium and Chloride Ions Through Nanotubes: A Molecular Simulation Study, Monatshefte Chem. Chem., 2014, vol. 14S, no. 6, pp. 881–890.Google Scholar
  14. 14.
    Lvova, N.A. and Ananina, O.Y., Theoretical Study of the Adsorption Properties of Porous Boron Nitride Nanosheets, Comp. Mater. Sci., 2016, vol. 11S, pp. 11–17.CrossRefGoogle Scholar
  15. 15.
    Zhao, Z., Gupta, K.M., He, Z., and Jiang, J., Dipeptide Crystals as Reverse Osmosis Membranes for Water Desalination: Atomistic Simulation, J. Phys. Chem. C, 2018, vol. 122, no. 11, pp. 6026–6032.CrossRefGoogle Scholar
  16. 16.
    Tang, C.Y., Zhao, Y., Wang, R., Hélix–Nielsen, C., and Fane, A.G., Desalination by Biomimetic Aquaporin Membranes: Review of Status and Prospects, Desalination, 2013, vol. 308, pp. 34–40.CrossRefGoogle Scholar
  17. 17.
    Pendergast, M.M. and Hoek, E.M., A Review of Water Treatment Membrane Nanotechnologies, Energy Environ. Sci., 2011, vol. 4, no. 6, pp. 1946–1971.CrossRefGoogle Scholar
  18. 18.
    Qu, X., Alvarez, P.J., and Li, Q., Applications of Nanotechnology in Water and Wastewater Treatment, Water Res., 2013, vol. 47, no. 12, pp. 3931–3946.CrossRefGoogle Scholar
  19. 19.
    Xu, P., Zeng, G.M., Huang, D.L., Feng, C.ᄂ., Hu, S., Zhao, M.H., and Liu, Z.F., Use of Iron Oxide Nanomaterials in Wastewater Treatment: A Review, Sci. Total Env., 2012, vol. 424, pp. 1–10.Google Scholar
  20. 20.
    Corry, B., Designing Carbon Nanotube Membranes for Efficient Water Desalination, J. Phys. Chem. B, 2008, vol. 112, no. S, pp. 1427–1434.Google Scholar
  21. 21.
    Kanani, D.M., Fissel, W.H., Roy, S., Dubnisheva, A., Fleischman, A., and Zydney, A., Permeability–Selectivity Analysis for Ultrafiltration: Effect of Pore Geometry, J. Membrane Sci., 2010, vol. 349, pp. 40S–410.CrossRefGoogle Scholar
  22. 22.
    Liu, W., Luo, X., Bao, Y., Liu, Y.P., Ning, G.H., Abdelwahab, I., Li,, N a i, C.T., Hu, Z.G., Zhao, D., Liu, B., Quek, S.Y., and Loh, K.P., A Two–Dimensional Conjugated Aromatic Polymer Via C–C Coupling Reaction, Nature Chem., 2017, vol. 9, no. 6, p. 563.Google Scholar
  23. 23.
    Yan, Y.G., Wang, W.S., Li, W., Loh, K.P., and Zhang, J., A Graphene–Like Membrane with an Ultrahigh Water Flux for Desalination, Nanoscale, 2017, vol. 9, no. 47, pp. 18951–18958.CrossRefGoogle Scholar
  24. 24.
    Wang, J. and Hou, T., Application of Molecular Dynamics Simulations in Molecular Property Prediction. 1. Density and Heat of Vaporization, J. Chem. Theory Comp., 2011, vol. 7, no. 7, pp. 2151–2165.CrossRefGoogle Scholar
  25. 25.
    Alshehri, M.H., Interactions of Boron Nitride Nanotubes with Lipid Bilayer Membranes, J. Comput. Theor. Nanosci., 2018, vol. 15, no. 1, pp. 311–316.CrossRefGoogle Scholar
  26. 26.
    Tsukanov, A.A. and Psakhie, S.G., From the Soft Matter–Hard Matter Interface to Bio–Self–Organization and Hybrid Systems, Phys. Mesomech., 2017, vol. 20, no. 1, pp. 43–54.CrossRefGoogle Scholar
  27. 27.
    Tsukanov, A.A. and Psakhie, S.G., Energy and Structure of Bonds in the Interaction of Organic Anions with Layered Double Hydroxide Nanosheets: A Molecular Dynamics Study, Sci. Rep., 2016, vol. 6, pp. 19986.ADSCrossRefGoogle Scholar
  28. 28.
    Gogoi, P., Chandravanshi, M., Mandal, S.K., Srivastava, A., and Kanaujia, S.P., Heterogeneous Behavior of Metalloproteins Toward Metal Ion Binding and Selectivity: Insights from Molecular Dynamics Studies, J. Biomolec. Struct. Dynamics, 2016, vol. 34, no. 7, pp.1470–1485.Google Scholar
  29. 29.
    Iakovlev, E., Zhilyaev, P., and Akhatov, I., Atomistic Study of the Solid State Inside Graphene Nanobubbles, Sci. Rep., 2017, vol. 7, no. 1, pp. 17906.ADSCrossRefGoogle Scholar
  30. 30.
    Schneemilch, M. and Quirke, N., Free Energy of Adsorption of Supported Lipid Bilayers from Molecular Dynamics Simulation, Chem. Phys. Lett., 2016, vol. 664, pp. 199–204.ADSCrossRefGoogle Scholar
  31. 31.
    Lozhkomoev, A.S., Lerner, M.I., Tsukanov, A.A., Kazantsev, S.O., Bakina, O.V., and Psakhie, S.G., On the Possibility of Soft Matter Nanostructure Formation Based on Mesoporous Aluminum Hydroxide. Biomedical Application Perspectives, Phys. Mesomech., 2017, vol. 20, no. 2, pp. 134–141.CrossRefGoogle Scholar
  32. 32.
    Franco, L.F., Castier, M., and Economou, I.G., Anisotropic Parallel Self–Diffusion Coefficients Near the Calcite Surface: A Molecular Dynamics Study, J. Chem. Phys., 2016, vol. 145, no. 8, pp. 084702.ADSCrossRefGoogle Scholar
  33. 33.
    Lin, T.J., Force Field Parameters and Atomistic Surface Models for Hydroxyapatite and Analysis of Biomolecular Adsorption at Aqueous Interfaces, Doct. Dissertation, Akron: The University of Akron, 2013.Google Scholar
  34. 34.
    Heinz, H., The Role of Chemistry and pH of Solid Surfaces for Specific Adsorption of Biomolecules in Solution—Accurate Computational Models and Experiment, J. Phys. Condens. Matt., 2014, vol. 26, no. 24, pp. 244105.CrossRefGoogle Scholar
  35. 35.
    Heinz, H., Lin, T.J., Kishore Mishra, R., and Emami, F.S., Thermodynamically Consistent Force Fields for the Assembly of Inorganic, Organic, and Biological Nanostructures: The INTERFACE Force Field, Langmuir, 2013, vol. 29, no. 6, pp. 1754–1765.Google Scholar
  36. 36.
    Berendsen, H.J., Postma, J.P., van Gunsteren, W.F., and Hermans, J., Interaction Models for Water in Relation to Protein Hydration, Intermolecular Forces, Dordrecht: Springer, 1981, pp. 331–342.Google Scholar
  37. 37.
    Ryckaert, J.P., Ciccotti, G., and Berendsen, H.J., Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n–Alkanes, J. Comp. Phys., 1977, vol. 23, no. 3, pp. 327–341.ADSCrossRefGoogle Scholar
  38. 38.
    Hockney, R.W. and Eastwood, J.W., Computer Simulation Using Particles, New York: Taylor and Francis, Inc., 1988.CrossRefzbMATHGoogle Scholar
  39. 39.
    Plimpton, S., Fast Parallel Algorithms for Short–Range Molecular Dynamics, J. Comp. Phys., 1995, vol. 117, pp. 1–19.ADSCrossRefzbMATHGoogle Scholar
  40. 40.
    Sadovnichy, V., Tikhonravov, A., Voevodin, V., and Opanasenko, V., "Lomonosov”: Supercomputing at Moscow State University, Contemporary High Performance Com–puting: From Petascale toward Exascale, Chapman and Hall/CRC Comput. Sci. Ser., 2013, pp. 283–307.Google Scholar
  41. 41.
    Adinets, A.V., Bryzgalov, P.A., Voevodin, V.V., Zhumatii, S.A.E., Nikitenko, D.A., and Stefanov, K.S., Job Digest: An Approach to Dynamic Analysis of Job Characteristics on Supercomputers, Num. Meth. Progr. Adv. Comp., 2012, vol. 13, no. 4, pp. 160–166.Google Scholar
  42. 42.
    Heiranian, M., Farimani, A.B., and Aluru, N.R. Water Desalination with a Single–Layer MoS2 Nanopore, Nat. Comm., 2015, vol. 6, pp. 8616.Google Scholar
  43. 43.
    Cohen–Tanugi, D. and Grossman, J.C., Water Desalination Across Nanoporous Graphene, Nano Lett., 2012, vol. 12, no. 7, pp. 3602–3608.ADSCrossRefGoogle Scholar
  44. 44.
    Chan, W.F., Chen, H.Y., Surapathi, A., Taylor, M.G., Shao, X., Marand, E., and Johnson, J.K., Zwitterion Functionalized Carbon Nanotube/Polyamide Nanocomposite Membranes for Water Desalination, ACS Nano., 2013, vol. 7, no. 6, pp. 5308–5319.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Tsukanov
    • 1
  • E. V. Shilko
    • 1
    Email author
  • E. Gutmanas
    • 2
  • S. G. Psakhie
    • 1
  1. 1.Institute of Strength Physics and Materials Science, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Department of Materials Science and EngineeringTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations