Advertisement

Physical Mesomechanics

, Volume 21, Issue 6, pp 515–522 | Cite as

Structure and Mechanical Properties of Aluminum 1560 Alloy after Severe Plastic Deformation by Groove Pressing

  • E. N. MoskvichevEmail author
  • V. A. Skripnyak
  • V. V. Skripnyak
  • A. A. Kozulin
  • D. V. Lychagin
Article
  • 2 Downloads

Abstract

The paper analyzes the structure and mechanical properties of sheet-rolled Al 1560 alloy after four cycles of groove pressing. The analysis shows that under quasi-static uniaxial tension at a strain rate of 1 s-1, the offset yield strength of the groove-pressed alloy and its ultimate strength are respectively 1.4 and 1.5 times higher than their values in the as-received state. The ultimate tensile strain of the alloy after pressing is 17% against 21% in the as-received state, and its microhardness is 2.7 times higher. According to an electron backscatter diffraction analysis, the groove-pressed alloy has a bimodal structure composed of elongated coarse grains and agglomerates of equiaxed grains of micron and submicron sizes. When pressed, the alloy increases the density of its grain boundaries with a misorientation angle of less than 15° and changes its texture from rolling to upsetting whose volume during pressing grows. Part of the grain orientations in both states corresponds to recrystallization. The research data suggest that groove pressing provides grain structure refinement via plastic distortion in Al 15 60 alloy and a considerable increase in its strength properties.

Keywords

aluminum alloy severe plastic deformation mechanical properties grain structure electron backscatter diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Valiev, R.Z., Creation of Nanostructured Metals and Alloys with Unique Properties Using Severe Plastic Deformation, Ross. Nanotekhnol., 2006, vol. 1, pp. 208–216.Google Scholar
  2. 2.
    Valiev, R.Z., Alexandrov, I.V., Nanostructured Materials Produced by Severe Plastic Deformation, Moscow: Logos, 2000.Google Scholar
  3. 3.
    Kozlov, E.V., Koneva, N.A., Zhdanov, A.N., Popova, N.A., and Ivanov, Yu.F., Structure and Resistance to Deformation of FCC Ultrafine–Grained Metals and Alloys, Fiz. Mezomekh2004, vol. 7, no. 4, pp. 93–113.Google Scholar
  4. 4.
    Panin, V.E., Deryugin, E.E., and Kul'kov, S.N., Mesomechanics of Material Strengthening by Nanodisperse Inclusions, J. Appl. Mech. Tech. Phys., 2010, vol. 51, no. 4, pp. 555–568.ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Kozulin, A.A., Skripnyak, V.A., Krasnoveikin, V.A., Skripnyak, V.V., and Karavatskii, A.K., An Investigation of Physico–Mechanical Properties of Ultrafine–Grained Magnesium Alloys Subjected to Severe Plastic Deformation, Russ. Phys. J., 2015, vol. 57, no. 9, pp. 1261–1267.CrossRefGoogle Scholar
  6. 6.
    Panin, V.E. and Egorushkin, V.E., Physical Mesomechanics of Crystal Structure Refinement upon Severe Plastic Deformation, Phys. Mesomech., 2008, vol. 11, no. 5–6, pp.203–212.Google Scholar
  7. 7.
    Zha, M., Yanjun, Li, Mathiesen, R., Bjorge, R., and Roven, H., Microstructure Evolution and Mechanical Behavior of a Binary Al–7Mg Alloy Processed by Equal–Channel Angular Pressing, Acta Mater., 2015, vol. 84, pp. 42–54.CrossRefGoogle Scholar
  8. 8.
    Dadbakhsha, S., Taheri, A.K., and Smith, C.W., Strengthening Study on 6082 Al Alloy after Combination of Aging Treatment and ECAP Process, Mater. Sci. Eng. A, 2010, vol. 527, pp. 4758–4766.CrossRefGoogle Scholar
  9. 9.
    Estrin, Y. and Vinogradov, A., Extreme Grain Refinement by Severe Plastic Deformation: A Wealth of Challenging Science, Acta Mater., 2013, vol. 61, pp. 782–817.CrossRefGoogle Scholar
  10. 10.
    Shin, D.H., Park, J., Kim, Y., and Park, K., Constrained Groove Pressing and Its Application to Grain Refinement of Aluminum, Mater. Sci. Eng. A, 2002, vol. 328, pp. 98–103.CrossRefGoogle Scholar
  11. 11.
    Krishnaiah, A., Chakkingal, U., and Venugopal, P., Production of Ultrafine Grain Sizes in Aluminum Sheets by Severe Plastic Deformation Using the Technique of PHYSICAL MESOMECHANICS Vol. 21 No. 6 2018 Groove Pressing, Scripta Mater., 2005, vol. 52, pp. 1229–1233.CrossRefGoogle Scholar
  12. 12.
    Krishnaiah, A., Chakkingal, U., and Venugopal, P., Applicability of Groove Pressing Technique for Grain Refinement in Commercial Purity Copper, Mater. Sci. Eng. A, 2005, vol. 410–411, pp. 337–340.CrossRefGoogle Scholar
  13. 13.
    Thirugnanam, A., Sampath Kumar, T.S., and Chakkingal, U., Tailoring the Bioactivity of Commercially Pure Titanium by Grain Refinement Using Groove Pressing, Mate. Sci. Eng., 2010, vol. 30, no. 1, pp. 203–208.Google Scholar
  14. 14.
    Ratna Sunil, B., Anil Kumar, A., Sampath Kumar, T.S., and Chakkingal, U., Role of Biomineralization on the Degradation of Fine Grained AZ31 Magnesium Alloy Processed by Groove Pressing, Mater. Sci. Eng., 2013, vol. 33, pp. 1607–1615.Google Scholar
  15. 15.
    Pashinskaya, E.G., Varyukhin, V.N., Zavdoveev, A.V., Burkhovetskii, V.V., and Glazunova, V.A., Electron Backscattered Diffraction Method in the Analysis of Deformed Steel Structures, Deform. Razrush. Mater., 2012, no. 6, pp. 35–40.Google Scholar
  16. 16.
    Musabirov, I.I., Structural Analysis of N MnGa Alloy by Means of Electron Back Scattering Diffraction Method, Lett. Mater., 2013, no. 3, pp. 20–24.CrossRefGoogle Scholar
  17. 17.
    Salimyanfarda, F., Toroghinejada, M.R., Ashrafizadeha, F., and Jafari, M., EBSD Analysis of Nano–Structured Copper Processed by ECAP, Mater. Sci. Eng. A, 2011, vol. 528, pp. 5348–5355.CrossRefGoogle Scholar
  18. 18.
    Samiha, Y., Beausira, B., Bollea, B., and Grosdidier, T., In–Depth Quantitative Analysis of the Microstructures Produced by Surface Mechanical Attrition Treatment (SMAT), Mater. Character., 2013, vol. 83, pp. 129–138.CrossRefGoogle Scholar
  19. 19.
    Stráskáa, J., JaneKeka, M., Cízekb, J., Stráskya, J., and Hadzimac, B., Microstructure Stability of Ultra–Fine Grained Magnesium Alloy AZ31 Processed by Extrusion and Equal–Channel Angular Pressing (EX–ECAP), Mater. Character., 2014, vol. 94, pp. 69–79.CrossRefGoogle Scholar
  20. 20.
    Shirdel, A., Khajeh, A., and Moshksar, M.M., Experimental and Finite Element Investigation of Semi–Constrained Groove Pressing Process, Mater. Design, 2010, vol. 31, pp. 946–950.CrossRefGoogle Scholar
  21. 21.
    Chen, Y., Hjelen, J., and Roven, H.J., Application of EBSD Technique to Ultrafine Grained and Nanostructured Materials Processed by Severe Plastic Deformation: Sample Preparation, Parameters Optimization and Analysis, Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 1801–1809.CrossRefGoogle Scholar
  22. 22.
    Williams, D.B. and Carter, C.B., Transmission Electron Microscopy: A Textbookfor Materials Science, New York: Plenum Press, 1996.CrossRefGoogle Scholar
  23. 23.
    Markushev, M.V. and Murashkin, M.Yu., Structure and Mechanical Properties of Commercial Al–Mg 1560Alloy after Equal–Channel Agular Extrusion and Annealing, Mater. Sci. Eng. A, 2004, vol. 367(1–2), pp. 234–242.Google Scholar
  24. 24.
    Khodabakhshi, F., Haghshenas, M., Eskandari, H., and Koohbor, B., Hardness–Strength Relationships in Fine and Ultra–Fine Grained Metals Processed through Constrained Groove Pressing, Mater. Sci. Eng. A, 2015, vol. 636, pp. 331–339.CrossRefGoogle Scholar
  25. 25.
    Kozulin, A.A., Krasnoveikin, V.A., Skripnyak, V.V., Khandaev, B.V., and Li, Yu.V., Mechanical Properties of Aluminum Magnesium Alloys after Processing by a Severe Plastic Deformation Method, Sovr. Probl. Nauki Obraz., 2013, no. 6, p. 888.Google Scholar
  26. 26.
    Chuvildeev, V.N., Gryaznov, M.Yu., Kopylov, V.I., Sysoyev, A.N., Ovsyannikov, B.V., and Flyagin, A.A., Mechanical Properties of Microcrystalline AMg6 Aluminum Alloy, Vestnik Nizhny Novgorod State Univ., 2008, no. 4, pp. 35–42.Google Scholar
  27. 27.
    Panin, V.E., Egorushkin, V.E., Panin, A.V., and Chernyavskii, A.G., Plastic Distortion as a Fundamental Mechanism in Nonlinear Mesomechanics of Plastic Deformation and Fracture, Phys. Mesomech., 2016, vol. 19, no. 3, pp. 255–268.CrossRefGoogle Scholar
  28. 28.
    Avtokratova, E.V., Mukhametdinova, O.E., Sitdikov, O.Sh., and Markushev, M.V., High Strain Rate Superplasticity of an 1570C aluminum alloy with bimodal structure obtained by equal–channel angular pressing and rolling, Lett. Mater., 2015, vol. 5, no. 2, pp. 129–132.CrossRefGoogle Scholar
  29. 29.
    El–Danaf, E.A., Mechanical Properties, Microstructure and Texture of Single Pass Equal Channel Angular Pressed 1050,5083, 6082 and 7010 Aluminum Alloys with Different Dies, Mater. Design, 2011, vol. 32, pp. 3838–3853.Google Scholar
  30. 30.
    Polukhin, P.I., Gorelik, S.S., and Vorontsov, V.K., Physical Principles of Plastic Deformation, Moscow: Metallurgia, 1982.Google Scholar
  31. 31.
    Panin, V.E., Panin, A.V., Elsukova, T.F., and Popkova, Yu.F., Fundamental Role of Curvature of the Crystal Structure in Plasticity and Strength of Solids, Phys. Mesomech., 2015, vol. 18, no. 2, pp. 89–99.CrossRefGoogle Scholar
  32. 32.
    Sarkari Khorrami, M., Kazeminezhad, M., and Kokabi, A.H., Thermal Stability during Annealing of Friction Stir Welded Aluminum Sheet Produced by Constrained Groove Pressing, Mater Design, 2013, vol. 45, pp. 222–227.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. N. Moskvichev
    • 1
    Email author
  • V. A. Skripnyak
    • 1
  • V. V. Skripnyak
    • 1
  • A. A. Kozulin
    • 1
  • D. V. Lychagin
    • 1
  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations