Advertisement

Physical Mesomechanics

, Volume 21, Issue 6, pp 483–491 | Cite as

Equivalent Uniaxial Cyclic Tensile Stress as an Energy Characteristic of Metal Fatigue under Multiparameter Loading

  • A. A. ShanyavskiyEmail author
Article
  • 3 Downloads

Abstract

A concept of the equivalent stress as an energy characteristic of the material ability to resist deformation and fatigue cracking is introduced based on the principles of physical mesomechanics and synergetics. It is shown that the tensile curve of the material, the fatigue life diagram, and the kinetic curve for fatigue crack growth obtained under common experimental conditions can be considered as unified or "master" diagrams for material behavior description under multiparameter loading. Examples of determining the equivalent stress value and correction functions on the basis of the introduced concept are given for fatigue specimens subjected to biaxial cyclic loading and for in-service fatigue specimens of aircraft structures.

Keywords

fatigue scale levels equivalent stress energy density multiparameter loading 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Panin, V.E., Likhachev, V.A., and Grinyaev, Yu.V., Structural Levels of Deformation in Solids, Novosibirsk: Science, 1990.zbMATHGoogle Scholar
  2. 2.
    Ivanova, V.S., Synergetics. Strength and Fracture of Metallic Materials, Cambridge: Cambridge International Science Publishing, 1998.Google Scholar
  3. 3.
    Panin, V.E., Synergetic Principles of Physical Mesomechanics, Phys. Mesomech., 2000, vol. 3, no. 6, pp. 5–34.Google Scholar
  4. 4.
    Shanyavskiy, A.A., Simulation of Fatigue Fracture of Metals. Synergetics in Aviation, Ufa: Monograph, 2007.Google Scholar
  5. 5.
    Panin, V.E., Egorushkin, V.E., and Panin, A.V., The Plastic Shear Channeling Effect and the Nonlinear Waves of Localized Plastic Deformation and Fracture, Phys. Mesomech., 2010, vol. 13, no. 5–6, pp. 215–232.CrossRefGoogle Scholar
  6. 6.
    Panin, V.E., Egorushkin, V.E., Panin, A.V., and Chernyavskii, A.G., Plastic Distortion as a Fundamental Mechanism in Nonlinear Mesomechanics of Plastic Deformation and Fracture, Phys. Mesomech., 2016, vol. 19, no. 3, pp. 255–268.CrossRefGoogle Scholar
  7. 7.
    Shanyavskiy, A.A., Safe Fatigue Fracture of Aircraft Structures, Ufa: Monograph, 2003.Google Scholar
  8. 8.
    Rybin, V.V., High Plastic Strains and Fracture of Metals, Moscow: Metallurgia, 1986.Google Scholar
  9. 9.
    Trefilov, V.I., Milman, Yu.V., and Firstov S.A., Physical Fundamentals of the Strength of Refractory Metals, Kiev: Naukova Dumka, 1975.Google Scholar
  10. 10.
    Koneva, N.A., Lychagin, D.V., Teplyakova, L.A., and Kozlov, E.V., Dislocation–Disclination Substructures and Hardening, Theoretical and Experimental Studies of Disclinations, V.I. Vladimirov (Ed.), Leningrad: Ioffe Physical–Technical Institute, 1986, pp. 116–126.Google Scholar
  11. 11.
    Sih, G.C. and Tang, X.S., Scaling of Volume Energy Density Function Reflecting Damage by Singularities at Macro–, Meso–and Microscopic Level, Theor. Appl. Fract. Mech., 2005, vol. 43(2), pp. 211–231.CrossRefGoogle Scholar
  12. 12.
    Lazzarin, P., Berto, F., Gomez, F.J., and Zappalorto, M., Some Advantages Derived from the Use of the Strain Energy Density over a Control Volume in Fatigue Strength Assessments of Welded Joints, Int. J. Fatigue, 2008, vol. 30(8), pp. 1345–1357.CrossRefGoogle Scholar
  13. 13.
    Shanyavskiy, A.A., Synergetical Models of Fatigue–Surface Appearance in Metals: The Scale Levels of Self–Organization, the Rotation Effects, and Density of Fracture Energy, in PROBAMAT~21st Century: Probabilities and Materials, Franzisconys, K., Ed., Netherlands: Kluwer Academic Publisher, 1998, pp. 11–44.Google Scholar
  14. 14.
    Miller, K.J., Fatigue under Complex Stress, Met. Sci., 1977, vol. 8–9, pp. 432–438.CrossRefGoogle Scholar
  15. 15.
    Hopper, C.D. and Miller, K.J., Fatigue Crack Propagation in Biaxial Stress Field, J. Strain Anal., 1977, vol. 1, pp. 23–28.CrossRefGoogle Scholar
  16. 16.
    Panin, V.E., Physical Mesomechanics of Solid Surface Layers, Phys. Mesomech., 1999, vol. 2, no. 6, pp. 5–21.Google Scholar
  17. 17.
    Shanyavsky, A.A., Scales of Metal Fatigue Cracking, Phys. Mesomech., 2015, vol. 18, no. 2, pp. 163–173.CrossRefGoogle Scholar
  18. 18.
    Wohler, A., Uber die Versuche zur Ermittlung der Festigkeit von Achsen, Welche in den Werk–statten der Niederschlesisch–Markischen Eisenbahn zu Frankfurt a. d. O. angestelt sind, Zeitschurift fur Bauwesen, 1863, Bd. 13, ss. 234–258.Google Scholar
  19. 19.
    Panin, V.E., Panin, A.V., and Moiseenko, D.D., Physical Mesomechanics of a Deformed Solid as a Multilevel System. II. Chessboard–Like Mesoeffect of the Interface in Heterogeneous Media in External Fields, Phys. Mesomech., 2007, vol. 10, no. 1–2, pp. 5–14.CrossRefGoogle Scholar
  20. 20.
    Panin, V.E. and Egorushkin, V.E., Deformable Solid as a Nonlinear Hierarchically Organized System, Phys. Mesomech., 2011, vol. 14, no. 5–6, pp. 207–223.CrossRefGoogle Scholar
  21. 21.
    Newman, J.C., Jr. A Review of Modeling Small–Crack Behavior and Fatigue–Life Predictions for Aluminium Alloys, Fatigue Fract. Eng. Mater. Struct., 1994, vol. 17, no. 4, pp. 429–439.CrossRefGoogle Scholar
  22. 22.
    Elber, W., The Significance of Fatigue Crack Closure, in Damage Tolerance in Aircraft Structures, ASTMSTP 486, ASTM, Philadelphia, 1971, pp. 230–242.Google Scholar
  23. 23.
    McClung, R.C., Closure and Growth of Mode I Cracks in Biaxial Fatigue, Fatigue Eng. Mater Struct., 1989, vol. 5, pp. 447–460.CrossRefGoogle Scholar
  24. 24.
    Ritchie, R.O., Mechanisms of Fatigue Crack Propagation in Metals, Ceramics and Composites: Role of Crack–Tip Shielding, Mater. Sci. Eng., 1988, vol. 103, pp. 15–28.Google Scholar
  25. 25.
    Shanyavskiy, A.A., Orlov, E.F., and Koronov, M.Z., Fractographic Analyses of Fatigue Crack Growth in D16T Alloy Subj ected to Biaxial Cyclic Loads at Various R–Ratios, Fatigue Fract. Eng. Mater. Struct., 1995, vol. 18, pp. 1263–1276.CrossRefGoogle Scholar
  26. 26.
    Shaniavski, A.A., Quantitative Fractographic Analyses of Fatigue Crack Growth in Longerons of In–Service Helicopter Rotor–Blade, Fatigue Fract. Eng. Mater. Struct., 1996, vol. 19, no. 9, pp. 1129–1141.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Aviation Register of the Russian FederationSheremetyevo-1 AirportMoscow regionRussia
  2. 2.Moscow Aviation Institute (National Research University)MoscowRussia

Personalised recommendations