Advertisement

Doklady Physics

, Volume 63, Issue 7, pp 272–275 | Cite as

The Mechanism of the Transition of Solid Hydrogen to the Conducting State at High Pressures

  • G. E. Norman
  • I. M. Saitov
PHYSICS
  • 2 Downloads

Abstract

The change in the structure of solid hydrogen upon compression along the isotherm of 100 K near the transition to the conducting state has been investigated within the density-functional theory. The dependences of pressure and electrical conductivity on the hydrogen density have been calculated. The pressure range from 602 to 836 GPa has been found where the first peak of the pair correlation function arises at a distance of 0.92 Å, which corresponds to the interatomic distance in the molecular \({\text{H}}_{3}^{ + }\) ion. Notably, this distance does not change with an increase in density. A sharp increase in the electrical conductivity is also observed.

Notes

REFERENCES

  1. 1.
    E. Wigner and H. B. Huntington, J. Chem. Phys. 3, 764 (1935).ADSCrossRefGoogle Scholar
  2. 2.
    V. A. Ginzburg, On Physics and Astrophysics. Papers and Reports, 2nd ed. (Nauka, Moscow, 1992) [in Russian].Google Scholar
  3. 3.
    R. Dias and I. F. Silvera, Science 355, 715 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    N. W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).ADSCrossRefGoogle Scholar
  5. 5.
    E. G. Brovman, Yu. Kagan, and A. Kholas, Zh. Eksp. Teor. Fiz. 62, 1492 (1972).Google Scholar
  6. 6.
    E. G. Brovman, Yu. Kagan, A. Kholas, and V. V. Pushkarev, Pis’ma Zh. Eksp. Teor. Fiz. 18, 269 (1973).Google Scholar
  7. 7.
    Yu. Kagan, V. V. Pushkarev, and A. Kholas, Zh. Eksp. Teor. Fiz. 73, 967 (1977).ADSGoogle Scholar
  8. 8.
    C. J. Pickard and R. J. Needs, Nature Phys. 3, 473 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    N. A. Kudryashov, A. A. Kutukov, and E. A. Mazur, JETP Lett. 104 (7), 460 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    N. N. Degtyarenko, E. A. Mazur, and K. S. Grishakov, JETP Lett. 105 (10), 664 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    G. Rillo, M. A. Morales, D. M. Ceperley, and C. Pierleoni, J. Chem. Phys. 148, 102314 (2018).ADSCrossRefGoogle Scholar
  12. 12.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54 (16), 11169 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 (18), 3865 (1996).ADSCrossRefGoogle Scholar
  14. 14.
    M. Cafiero and L. Adamowicz, Chem. Phys. Lett. 387, 136 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    G. E. Norman and I. M. Saitov, Dokl. Phys. 62 (6), 284 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Higher School of Economics (National Research University)MoscowRussia
  2. 2.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia
  3. 3.Moscow Institute of Physics and Technology (State University)DolgoprudnyiRussia

Personalised recommendations