Advertisement

Doklady Physics

, Volume 63, Issue 7, pp 302–306 | Cite as

Controlled Motion of a Spherical Robot of Pendulum Type on an Inclined Plane

  • T. B. Ivanova
  • A. A. Kilin
  • E. N. Pivovarova
MECHANICS
  • 27 Downloads

Abstract

This paper is concerned with a model of the controlled motion of a spherical robot with an axisymmetric pendulum actuator on an inclined plane. First integrals of motion and partial solutions are presented and their stability is analyzed. It is shown that the steady solutions exist only at an inclination angle less than some critical value and only for constant control action.

REFERENCES

  1. 1.
    E. N. Pivovarova and T. B. Ivanova, Bulletin of Udmurt University. Mathematics, Mechanics, Computer Science 4, 146 (2012).Google Scholar
  2. 2.
    T. B. Ivanova and E. N. Pivovarova, Russ. J. Nonlinear Dyn. 9 (3), 507 (2013).Google Scholar
  3. 3.
    D. V. Balandin, M. A. Komarov, and G. V. Osipov, J. Comput. Syst. Sci. Int. 52 (4), 650 (2013).Google Scholar
  4. 4.
    Yu. L. Karavaev and A. A. Kilin, Proc. Steklov Inst. Math. 295(1), 158 (2016).MathSciNetCrossRefGoogle Scholar
  5. 5.
    Yu. L. Karavaev and A. A. Kilin, Regul. Chaotic Dyn. 20 (2), 134 (2015).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    M. Roozegar, M. J. Mahjoob, and M. Ayati, Regul. Chaotic Dyn. 22 (3), 226 (2017).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    T. J. Ylikorpi, A. J. Halme, and P. J. Forsman, Rob. Autom. Syst. 87, 269 (2017).CrossRefGoogle Scholar
  8. 8.
    M. Svinin, Y. Bai, and M. Yamamoto, “Dynamic model and motion planning for a pendulum-actuated spherical rolling robot,” in IEEE Proc. of the Int. Conf. on Robotics and Automation, 2015, pp. 656–661.Google Scholar
  9. 9.
    Yu. G. Martynenko and A. M. Formal’skii, J. Comp. Syst. Sci. Int. 44 (4), 662 (2005).Google Scholar
  10. 10.
    D. S. Nasrallah, H. Michalska, and J. Angeles, IEEE Trans. Robotics 23 (3), 564 (2007).CrossRefGoogle Scholar
  11. 11.
    D. S. Nasrallah, J. Angeles, and H. Michalska, “Velocity and orientation control of an anti-tilting mobile robot moving on an inclined plane,” in IEEE Proc. of the Int. Conf. on Robotics and Automation, 2006, pp. 3717–3732.Google Scholar
  12. 12.
    F. R. Hogan and J. R. Forbes, Multibody Syst. Dyn. 35 (1), 91 (2015).MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. V. Borisov and I. S. Mamaev, Regul. Chaotic Dyn. 17 (2), 191 (2012).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    T. B. Ivanova, A. A. Kilin, and E. N. Pivovarova, J. Dyn. Control Syst. 24 (3), 497 (2018).Google Scholar
  15. 15.
    A. A. Kilin, E. N. Pivovarova, and T. B. Ivanova, Regul. Chaotic Dyn. 20 (6), 716 (2015).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Udmurt State University IzhevskRussia
  2. 2.Blagonravov Mechanical Engineering Research Institute, Russian Academy of SciencesMoscowRussia
  3. 3.Moscow Institute of Physics and Technology (State University)DolgoprudnyiRussia

Personalised recommendations