Advertisement

Doklady Physics

, Volume 63, Issue 6, pp 239–243 | Cite as

Block Elements in Contact Problems with a Variable Friction Coefficient

  • V. A. Babeshko
  • O. V. Evdokimova
  • O. M. Babeshko
Mechanics
  • 11 Downloads

Abstract

Contact problems on the surface interaction of rigid stamps with a deformed layered medium are considered provided that the variable friction coefficients arise in the contact zone as a function of the coordinate under the horizontal motion of stamps. The cause of the variable friction coefficients arising may be surface phenomena induced by a complex rheology of the deformed-medium surface, the chemical reactions proceeding, or a change in the properties of the contact surface of the stamps, for example, as a result of the presence of separate particles of the wear contact surface of the stamp and the base.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. G. Goryacheva and M. N. Dobychin, Contact Problems of Tribology (Mashinostroenie, Moscow, 1988) [in Russian].Google Scholar
  2. 2.
    N. I. Muskhelishvili, Singular Integral Equations (Moscow, 1962) [in Russian].zbMATHGoogle Scholar
  3. 3.
    N. P. Vekua, Sets of Singular Integral Equations (Moscow, 1970) [in Russian].Google Scholar
  4. 4.
    F. D. Gakhov, Boundary-Value Problems (Moscow, 1977) [in Russian].zbMATHGoogle Scholar
  5. 5.
    B. Nobl, Wiener–Hopf Method (Moscow, 1962) [in Russian].Google Scholar
  6. 6.
    G. S. Litvinchuk and I. M. Spitkovskii, Factorization of Matrix Functions (VINITI, Moscow, 1984) [in Russian].Google Scholar
  7. 7.
    I. Ts. Gokhberg and M. G. Krein, Usp. Mat. Nauk 13 (2), 3 (1958).Google Scholar
  8. 8.
    I. I. Vorovich and V. A. Babeshko, Dynamic Mixed Problems of Theory of Elasticity for Nonclassical Regions (Moscow, 1979) [in Russian].zbMATHGoogle Scholar
  9. 9.
    G. I. Eskin, Boundary-Value Problems for Elliptic Pseudodifferential Equations (Nauka, Moscow, 1973) [in Russian].Google Scholar
  10. 10.
    V. A. Babeshko, O. V. Evdokimova, and O. M. Babeshko, Dokl. Phys. 59 (12), 591 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    V. A. Babeshko, Prikl. Mat. Mekh. 31 (1), 80 (1967).Google Scholar
  12. 12.
    V. A. Babeshko, Prikl. Mat. Mekh. 33 (1), 52 (1969).Google Scholar
  13. 13.
    A. I. Markushevich, Theory of Analytic Functions (Moscow, 1968), Vol. 2 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Babeshko
    • 1
    • 2
  • O. V. Evdokimova
    • 1
  • O. M. Babeshko
    • 1
    • 2
  1. 1.Southern Research CenterRussian Academy of SciencesRostov-on-DonRussia
  2. 2.Kuban State UniversityKrasnodarRussia

Personalised recommendations