Doklady Earth Sciences

, Volume 484, Issue 1, pp 84–88 | Cite as

The Mechanism of Disordered Graphite Formation in UHP Diamond-Bearing Complexes

  • O. V. ShchepetovaEmail author
  • A. V. Korsakov
  • P. S. Zelenovskiy
  • D. S. Mikhailenko


Kyanite gneiss from the “New Barchinsky” locality (Kokchetav Massif) was studied in detail. This rock is characterized by zonal distribution of the C and SiO2 polymorphs in kyanite porphyroblasts: (1) cores with graphite and quartz inclusions; (2) clean overgrowth zone with inclusions of cuboctahedral diamond crystals. The Raman mapping of SiO2 polymorphs originally showed the presence of an association of disordered graphite + coesite “prohibited” in HT diamond-bearing rocks. Graphitization of diamond is the only likely mechanism of the disordered graphite formation in HT diamond-bearing rocks. However, the absence of disordered graphite in association with diamond in kyanite porphyroblasts from kyanite gneiss from the “New Barchinsky” locality eliminates the process of diamond graphitization at the retrograde stage. Most likely, crystallization of disordered graphite occurred at the retrograde stage from the UHP C–O–H fluid.



This study was supported by the Russian Science Foundation, project no. 15-17-30012. The equipment of Ural Center for Shared Use “Modern Nanotechnologies,” Ural Federal University, was used.


  1. 1.
    H. P. Schertl and N. V. Sobolev, J. Asian Earth Sci. 63, 5–38 (2013).CrossRefGoogle Scholar
  2. 2.
    O. Beyssac, B. Goffé, C. Chopin, and J. N. Rouzaud, Contrib. Mineral. Petrol. 143 (1),19–31 (2002).CrossRefGoogle Scholar
  3. 3.
    F. J. Luque, J. D. Pasteris, B. Wopenka, M. Rodas, and J. F. Barrenechea, Am. J. Sci. 298, 471–498 (1998).CrossRefGoogle Scholar
  4. 4.
    A. G. Sokol, G. A. Palyanova, Y. N. Palyanov, A. A. Tomilenko, and V. N. Melenevsky, Geochim. Cosmochim. Acta 73 (19), 5820–5834 (2009).CrossRefGoogle Scholar
  5. 5.
    B. Wopenka and J. D. Pasteris, Am. Mineral. 78 (5–6), 533–557 (1993).Google Scholar
  6. 6.
    N. V. Sobolev and V. S. Shatsky, Nature 343 (6260), 742–746 (1990).CrossRefGoogle Scholar
  7. 7.
    N. L. Dobretsov, M. M. Buslov, F. I. Zhimulev, A. V. Travin, and A. A. Zayachkovskii, Russ. Geol. Geophys. 47 (4), 424–440 (2006).Google Scholar
  8. 8.
    A. V. Korsakov, V. S. Shatsky, N. V. Sobolev, and A. A. Zayachokovsky, Eur. J. Mineral. 14 (5), 915–928 (2002).CrossRefGoogle Scholar
  9. 9.
    J. Hermann, Lithos 70 (3), 163–182 (2003).CrossRefGoogle Scholar
  10. 10.
    H. S. Tomkins, R. Powell, and D. J. Ellis, J. Metamorph. Geol. 25 (6), 703–713 (2007).CrossRefGoogle Scholar
  11. 11.
    A. S. Stepanov, D. Rubatto, J. Hermann, and A. V. Korsakov, Am. Mineral. 101 (4), 788–807 (2016).CrossRefGoogle Scholar
  12. 12.
    T. H. Green and P. L. Hellman, Lithos 15 (4), 253–266 (1982).CrossRefGoogle Scholar
  13. 13.
    R. J. Hemley, High-Pressure Research in Mineral Physics: A Volume in Honor of Syun-iti Akimoto (Terra Scientific, Tokyo, 1987), vol. 39, pp. 347–359.Google Scholar
  14. 14.
    J. P. Perrillat, I. Daniel, J. M. Lardeaux, and H. Cardon, J. Petrol. 44 (4), 773–788 (2003).CrossRefGoogle Scholar
  15. 15.
    S. L. Hwang, P. Shen, H. T. Chu, T. F. Yui, J. G. Liou, N. V. Sobolev, and V. S. Shatsky, Earth Planet. Sci. Lett. 231 (3), 295–306 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • O. V. Shchepetova
    • 1
    Email author
  • A. V. Korsakov
    • 1
  • P. S. Zelenovskiy
    • 2
  • D. S. Mikhailenko
    • 1
  1. 1.Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Natural Sciences and Mathematics, Ural Federal UniversityYekaterinburgRussia

Personalised recommendations