Doklady Earth Sciences

, Volume 484, Issue 1, pp 71–75 | Cite as

Shock Waves as a Possible Mechanism of Generation of Abnormally High Accelerations during the М 9.0 Tohoku Earthquake on March 11, 2011

  • O. V. PavlenkoEmail author


A mechanism of generation of abnormally high accelerations (>1g, with the maximum of ~3g), recorded during the 2011 Tohoku earthquake (Mw = 9.0), is proposed. Based on the records of vertical groups, soil behavior in near-fault zones is studied to reveal an atypical model: shear moduli increased under string motions, demonstrating strengthening of the soil, then decreased. This phenomenon can be explained under the supposition that soils suffered some additional effect. The shapes of accelerograms show a decrease in the duration and an increase in the intensity of strong motions with distance from the source, possibly indicating superposition of seismic waves and formation of a shock wave by a rapidly moving source (a tip of the crack propagating in the source).



The records of the Tohoku earthquake and soil parameters are courtesy of the strong-motion seismograph network of Japan (Kyoshin-network, This work was supported by the Russian Foundation for Basic Research, project no. 17-05-01143.


  1. 1.
    T. Furumura, S. Takemura, S. Noguchi, T. Takemoto, T. Maeda, K. Iwai, and S. Padhy, Landslides, No. 8, 333–338 (2011).Google Scholar
  2. 2.
    F. Nagashima, H. Kawase, S. Matsushima, F. J. Sanchez-Sesma, T. Hayakawa, T. Satoh, and M. Oshima, in Proc. 15th World Conference on Earthquake Engineering (Lisbon, September 24–28, 2012).Google Scholar
  3. 3.
    O. V. Pavlenko and K. Irikura, Pure Appl. Geophys. 160, 2365–2379 (2003).CrossRefGoogle Scholar
  4. 4.
    O. V. Pavlenko and K. Irikura, Bull. Seismol. Soc. Am. 96, 2131–2145 (2006).CrossRefGoogle Scholar
  5. 5.
    O. V. Pavlenko, Pure Appl. Geophys. 165, 1789–1812 (2008).CrossRefGoogle Scholar
  6. 6.
    K. Koketsu, Y. Yokota, N. Nishimura, Y. Yagi, S. Miyazaki, K. Satake, Y. Fujii, H. Miyake, S. Sakai, Y. Yamanaka, and T. Okada, Earth Planet. Sci. Lett. 310, 480–487 (2011).CrossRefGoogle Scholar
  7. 7.
    K. Asano and T. Iwata, Earth, Planets Space 64 (12), 1111–1123 (2012).CrossRefGoogle Scholar
  8. 8.
    O. V. Pavlenko, Dokl. Earth Sci. 476 (2), 1238–1244 (2017).CrossRefGoogle Scholar
  9. 9.
    O. V. Rudenko and O. A. Sapozhnikov, Usp. Fiz. Nauk 174 (9), 973–989 (2004).CrossRefGoogle Scholar
  10. 10.
    O. V. Pavlenko and K. Irikura, Geophys. Res. Lett. 29 (19), 36-1–36-4 (2002).Google Scholar
  11. 11.
    M. Bouchon, M.-P. Bouin, H. Karabulut, M. N. Toksoz, M. Dietrich, and A. J. Rosakis, Geophys. Res. Lett. 28, 2723–2726 (2001).CrossRefGoogle Scholar
  12. 12.
    W. L. Ellsworth, M. Celebi, J. R. Evans, E. G. Jensen, R. Kayen, M. C. Metz, D. J. Nyman, J. W. Roddick, P. Spudich, and C. D. Stephens, Earthquake Spectra 20, 597–615 (2004).CrossRefGoogle Scholar
  13. 13.
    D. R. Robinson, C. Brough, and S. Das, J. Geophys. Res. 111, B08303 (2006). doi Google Scholar
  14. 14.
    M. Vallée and E. M. Dunham, Geophys. Res. Lett. 39, L05311 (2012). doi CrossRefGoogle Scholar
  15. 15.
    F. Tajima, J. Mori, and B. L. N. Kennet, Tectonophysics 586, 15–34 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Schmidt Institute of Physics of the Earth, Russian Academy of SciencesMoscowRussia

Personalised recommendations