Advertisement

Doklady Earth Sciences

, Volume 483, Issue 2, pp 1564–1566 | Cite as

Abnormally High δ34S Values of Edifices at the Mid-Atlantic Ridge: The Closed System Effect at the Sulfide Generation Zone

  • E. O. DubininaEmail author
  • O. O. Stavrova
  • N. S. Bortnikov
GEOCHEMISTRY
  • 22 Downloads

Abstract

The S isotope composition of single sulfide grains was studied taking into account the sequence of their formation in samples from the sulfide structures of hydrothermal fields confined to the Mid-Atlantic Ridge. The ranges of δ34S values obtained for the structures of the Logachev, Krasnov, and Rainbow fields are the following (‰): from +3.9 to +6, from +7.1 to +9.8, and from +2.1 to +8.4, respectively. Sulfides of later generations within each of these fields are regularly enriched in the 34S isotope relative to sulfides of earlier generations. Here, the S isotope composition does not depend on the composition and structure of the mineral. The data obtained show that in the sulfide generation zone, where seawater sulfate reduction takes place, the system is closed relatively to fluid. This leads to an increase in δ34S values of reduced sulfur compounds in the hydrothermal fluid and to sulfides being crystallized.

Notes

ACKNOWLEDGMENTS

This work was performed within the framework of State Contract no. AAAA-A18-118022090074-4.

REFERENCES

  1. 1.
    N. S. Bortnikov and I. V. Vikent’ev, Geol. Ore Deposits 47 (1), 13–44 (2005).Google Scholar
  2. 2.
    W. C. Shanks III, Rev. Mineral. 43, 469–517 (2001).CrossRefGoogle Scholar
  3. 3.
    D. E. Canfield, Rev. Mineral. 43, 607–636 (2001).CrossRefGoogle Scholar
  4. 4.
    Zh. Zeng, Y. Maa, S. Chen, D. Selby, X. Wang, and X. Yin, Ore Geol. Rev. 87, 155–171 (2017).CrossRefGoogle Scholar
  5. 5.
    R. R. Seal II, Rev. Mineral. Geochem. 61, 633–677 (2006).CrossRefGoogle Scholar
  6. 6.
    H. Ohmoto and A. C. Lasaga, Geochim. Cosmochim. Acta 46, 1727–1745 (1982).CrossRefGoogle Scholar
  7. 7.
    Yu. A. Bogdanov, N. S. Bortnikov, I. V. Vikent’ev, E.  G. Gurvich, and A. M. Sagalevich, Geol. Ore Deposits 39 (1), 58–78 (1997).Google Scholar
  8. 8.
    Yu. A. Bogdanov, N. S. Bortnikov, I. V. Vikent’ev, A. Yu. Lein, E. G. Gurvich, et al., Geol. Ore Deposits 44 (6), 444–473 (2002).Google Scholar
  9. 9.
    M. Peters, H. Strauss, J. Farquhar, C. Ockert, B. Eickmann, and C. L. Jost, Chem. Geol. 269, 180–196 (2010).CrossRefGoogle Scholar
  10. 10.
    Y. Fouquet, G. Cherkashov, J. L. Charlou, and N. S. Bortnikov, InterRidge News 17, 15–20 (2008).Google Scholar
  11. 11.
    A. Y. Lein, N. V. Ulyanova, A. A. Ulyanov, G. A. Cherkashe, and T. V. Stepanova, Russ. J. Earth Sci. 3, 371–393 (2001).CrossRefGoogle Scholar
  12. 12.
    O. Rouxel, Y. Fouquet, and J. N. Ludden, Econ. Geol. 99, 585–600 (2004).CrossRefGoogle Scholar
  13. 13.
    C. Ockert, MSc Thesis (Univ. of Münster, Münster, 2008).Google Scholar
  14. 14.
    G. J. Bluth and H. Ohmoto, Can. Mineral. 26, 505–515 (1988).Google Scholar
  15. 15.
    L. G. Woodruff and W. C. Shanks III, J. Geophys. Res. 93, 4562–4572 (1988).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. O. Dubinina
    • 1
    Email author
  • O. O. Stavrova
    • 1
  • N. S. Bortnikov
    • 1
  1. 1.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations