Doklady Earth Sciences

, Volume 483, Issue 1, pp 1473–1474 | Cite as

Genesis of Diamond in Metal–Carbon and Metal–Sulfur–Carbon Melts: Evidence from Experimental Data

  • E. I. ZhimulevEmail author
  • A. I. Chepurov
  • N. V. Sobolev


The experimental data on diamond growth in the Fe–Ni–S–C and Fe–S–C systems with a sulfur content of 5–14 wt % at 5.5 GPa and 1300–1350°C are reported. Colorless and light yellow diamond crystals with a weight of 0.1–0.8 ct were synthesized. It is shown in the Fe–S–C system that at 5.5. GPa diamond may crystallize in a very narrow temperature range, from 1300 to 1370°C. Based on comparative analysis of the experimental data and the results of the study of native iron inclusions in natural diamonds from kimberlite pipes, it is suggested that diamond genesis may be partly controlled by the pre-eutectic (by the concentration of sulfur in relation to metal) metal–sulfide melt.



This study was supported by the Siberian Branch, Russian Academy of Sciences, project no. 19 (“Mineral-Forming and Fluid Systems of the Earth in Relation to the Origin of Diamonds: Natural and Experimental Data”) and was performed withn the framework of the State Contract of IGM SB RAS (project no. 0330-2016-0012).


  1. 1.
    E. S. Efimova, N. V. Sobolev, and L. N. Pospelova, Zap. Vses. Mineral. O-va 11 (3), 300–310 (1983).Google Scholar
  2. 2.
    G. P. Bulanova, Z. V. Spetsius, and N. V. Leskova, Sulphides in Diamonds and Xenoliths from Yakut Kimberlite Pipes (Nauka, Novosibirsk, 1990) [in Russian].Google Scholar
  3. 3.
    S. B. Shirey, P. Cartigny, D. J. Frost, et al., Rev. Mineral. Geochem. 75, 355–421 (2013).CrossRefGoogle Scholar
  4. 4.
    S. E. Haggerty, Nature 320 (6057), 34–38 (1986).CrossRefGoogle Scholar
  5. 5.
    R. H. Wentorf, Adv. High Pressure Res., No. 4, 249–281 (1974).Google Scholar
  6. 6.
    A. I. Chepurov, I. I. Fedorov, V. M. Sonin, and N. V. Sobolev, Dokl. Akad. Nauk 336 (2), 238–240 (1994).Google Scholar
  7. 7.
    A. I. Chepurov, Geol. Geofiz., No. 8, 119–124 (1988).Google Scholar
  8. 8.
    E. I. Zhimulev, A. I. Chepurov, E. F. Sinyakova, et al., Geochem. Int. 50 (3), 205–216 (2012).CrossRefGoogle Scholar
  9. 9.
    E. I. Zhimulev, M. A. Shein, and N. P. Pokhilenko, Dokl. Earth Sci. 451 (1), 729–731 (2013).CrossRefGoogle Scholar
  10. 10.
    E. I. Zhimulev, V. M. Sonin, A. M. Mironov, and A. I. Chepurov, Geochem. Int. 54 (5), 415–422 (2016).CrossRefGoogle Scholar
  11. 11.
    E. M. Smith, S. B. Shirey, F. Nestola, et al., Science 354, 1403–1405 (2016).CrossRefGoogle Scholar
  12. 12.
    N. V. Sobolev, E. S. Efimova, and L. N. Pospelova, Geol. Geofiz., No. 12, 25–29 (1981).Google Scholar
  13. 13.
    D. E. Jacob, A. Kronz, and K. S. Viljoen, Contrib. Mineral. Petrol. 146, 566–576 (2004).CrossRefGoogle Scholar
  14. 14.
    N. V. Sobolev, E. S. Efimova, A. M. Logvinova, et al., Dokl. Earth Sci. 376 (1), 34–38 (2001).Google Scholar
  15. 15.
    Y. N. Pal’yanov, A. G. Sokol, Y. M. Borzdov, et al., Nature 400 (6743), 417–418 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. I. Zhimulev
    • 1
    Email author
  • A. I. Chepurov
    • 1
  • N. V. Sobolev
    • 1
    • 2
  1. 1.Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations