Advertisement

Doklady Earth Sciences

, Volume 482, Issue 1, pp 1125–1129 | Cite as

Petrological Data Allow Estimating the Amplitudes of Crustal Uplifts Caused by Retrograde Metamorphism

  • E. V. Artyushkov
  • S. P. Korikovsky
  • H. -J. Massonne
  • P. A. Chekhovich
Geology
  • 14 Downloads

Abstract

Analysis of the morphology of the recent uplifts on Precambrian cratons and geological–geophysical data on the structure of the crust and mantle indicate that these structures were formed due to expansion of the crustal rocks as a result of retrograde metamorphism. This occurred due to the contribution of large volumes of deep fluids to the complexes of the Early Proterozoic rocks, which underwent high-grade metamorphism in the lower crust. Later, these complexes were moved to the shallower depths after denudation of thick overlap sequences from the craton’s surfaces. The calculation of the volumetric expansion effects using PT diagrams for the main types of metamorphic rocks shows that this mechanism could have prompted the uplifts of the Precambrian crust in recent time with amplitudes from 100–200 to 1000–1500 m.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Neotectonic Map of the World 1: 15000000, Ed. by N. I. Nikolaev, Yu. Ya. Kuznetsov, and A. A. Neimark (Ministry of Geology of the USSR, Ministry of Higher and Secondary Specialized Education USSR, Moscow, 1981).Google Scholar
  2. 2.
    Neotectonic Map of Northern Eurasia 1: 5000000, Ed. by A. F. Grachev (Ministry of Natural Resources and Environment of RF, Russ. Acad. Sci., Moscow, 1997).Google Scholar
  3. 3.
    N. Flament, M. Gurnis, and R. D. Müller, Lithosphere 5 (2), 189–210 (2013). doi 10.1130/L245CrossRefGoogle Scholar
  4. 4.
    E. V. Artyushkov and P. A. Chekhovich, Dokl. Earth Sci. 466 (1), 6–10 (2016). doi 10.1134/S1028334X16010098CrossRefGoogle Scholar
  5. 5.
    A. J. Schaeffer and S. Lebedev, Geophys. J. Int. 194, 417–449 (2013). doi: 10.1093/gji/ggt095CrossRefGoogle Scholar
  6. 6.
    E. V. Artyushkov, Russian Geol. Geophys. 53 (6), 566–582 (2012). doi: 10.1016/j.rgg.2012.04.005CrossRefGoogle Scholar
  7. 7.
    Early Precambrian of Baltic Shield, Ed. by V. A. Glebovitskii (Nauka, St. Petersburg, 2005) [in Russian].Google Scholar
  8. 8.
    H.-J. Massonne, A. P. Willner, and T. Gerya, Earth Planet. Sci. Lett. 256, 12–27 (2007). doi 10.1016/j.epsl.2007.01.013CrossRefGoogle Scholar
  9. 9.
    H.-J. Massonne and T. Toulkeridis, Int. Geol. Rev. 34 (1), 67–80 (2012). doi 10.1080/00206814.2010.498907CrossRefGoogle Scholar
  10. 10.
    J. Glodny, A. Kühn, and H. Austrheim, Geochim. Cosmochim. Acta 72, 506–525 (2008).CrossRefGoogle Scholar
  11. 11.
    S. P. Korikovsky, Metamorphism, Granitization, Diaphthoresis, and Post-Magmatic Processes in the Precambrian of Udokano-Stanovaya Zone (Nauka, Moscow, 1967) [in Russian].Google Scholar
  12. 12.
    C. Jaupart and J. C. Mareschal, Heat Generation and Transport in the Earth (Cambridge Univ. Press, Cambridge, 2011).Google Scholar
  13. 13.
    J. Semprich, N. S. C. Simon, and Y. Y. Podladchikov, Int. J. Earth Sci. 99, 1487–1510 (2010).CrossRefGoogle Scholar
  14. 14.
    W. Schreyer, J. Geophys. Res. 100 (B5), 8353–8366 (1995). doi 10.1029/94JB02912CrossRefGoogle Scholar
  15. 15.
    C. Michaut, C. Jaupart, and J.-C. Mareshal, Lithos 109, 47–60 (2009). doi 10.1016/j.lithos.2008.05.008CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. V. Artyushkov
    • 1
  • S. P. Korikovsky
    • 2
  • H. -J. Massonne
    • 3
  • P. A. Chekhovich
    • 1
    • 4
  1. 1.Shmidt Joint Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and GeochemistryRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Mineralogy and Crystal ChemistryUniversity of StuttgartStuttgartGermany
  4. 4.Moscow State UniversityMoscowRussia

Personalised recommendations