Advertisement

Doklady Earth Sciences

, Volume 481, Issue 1, pp 907–911 | Cite as

Variations in the Duration of the Navigation Period along the Northern Sea Route in the 21st Century Based on Simulations with an Ensemble of Climatic Models: Bayesian Estimates

  • O. V. Kibanova
  • A. V. Eliseev
  • I. I. Mokhov
  • V. Ch. Khon
Geochemistry
  • 20 Downloads

Abstract

As global warming continues in the 21st century, one can expect a significant increase in the duration of the navigation period along the Northern Sea Route. In this study we found that, according to the representative concentration pathways 4.5 and 8.5 scenarios of the anthropogenic impact, the expected duration of the navigation period along the Northern Sea Route in the middle of the 21st century would be two to three months and three to six months by the end of the century.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. I. Mokhov, V. Ch. Khon, and E. Roeckner, Dokl. Earth Sci. 415 (5), 759–763 (2007).CrossRefGoogle Scholar
  2. 2.
    V. Ch. Khon and I. I. Mokhov, Izv., Atmos. Ocean. Phys. 46 (1), 14–20 (2010).CrossRefGoogle Scholar
  3. 3.
    V. C. Khon, I. I. Mokhov, M. Latif, et al., Clim. Change 100 (3–4), 757–768 (2010).CrossRefGoogle Scholar
  4. 4.
    I. I. Mokhov and V. Ch. Khon, Arkt.: Ekol. Ekon., No. 2 (18), 88–95 (2015).Google Scholar
  5. 5.
    I. I. Mokhov, V. Ch. Khon, and M. A. Prokof’eva, Dokl. Earth Sci. 468 (2), 641–645 (2016).CrossRefGoogle Scholar
  6. 6.
    V. C. Khon, I. I. Mokhov, and V. A. Semenov, Environ. Res. Lett. 12 (2), 024010 (2017).CrossRefGoogle Scholar
  7. 7.
    Climate Change 2013: The Physical Science Basis, Ed. by T. Stocker, D. Qin, G. K. Plattner, (Cambridge Univ. Press, New York, 2007).Google Scholar
  8. 8.
    A. V. Eliseev and V. A. Semenov, Dokl. Earth Sci. 471 (1), 1183–1187 (2016).CrossRefGoogle Scholar
  9. 9.
    J. A. Hoeting, D. Madigan, A. E. Raftery, et al., Stat. Sci. 14 (4), 382–417 (1999).CrossRefGoogle Scholar
  10. 10.
    A. V. Eliseev, Izv., Atmos. Ocean. Phys. 47 (2), 131–153 (2011).CrossRefGoogle Scholar
  11. 11.
    A. V. Eliseev, I. I. Mokhov, and A. V. Chernokulsky, Biogeosciences 11 (12), 3205–3223 (2014).CrossRefGoogle Scholar
  12. 12.
    G. Peng, W. N. Meier, D. J. Scott, et al., Earth Syst. Sci. Data 5 (2), 311–318 (2013).CrossRefGoogle Scholar
  13. 13.
    A. P. Weigel, R. Knutti, M. A. Liniger, et al., J. Clim. 23 (15), 4175–4191 (2010).CrossRefGoogle Scholar
  14. 14.
    P. M. Forster, T. Andrews, P. Good, et al., J. Geophys. Res.: Atmos. 118 (D3), 1139–1150 (2013).Google Scholar
  15. 15.
    F. Pithan and T. Mauritsen, Nat. Geosci. 7 (3), 181–184 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. V. Kibanova
    • 1
    • 2
  • A. V. Eliseev
    • 1
    • 2
    • 3
  • I. I. Mokhov
    • 1
    • 2
    • 4
  • V. Ch. Khon
    • 2
  1. 1.Moscow State UniversityFaculty of PhysicsMoscowRussia
  2. 2.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Kazan Federal UniversityKazanRussia
  4. 4.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia

Personalised recommendations