Advertisement

Molecular Modeling of the Post-Diffusion Stage of Surface Bio-Tissue Layers Immersion Optical Clearing

  • K. N. Dvoretsky
  • K. V. Berezin
  • M. L. Chernavina
  • A. M. Likhter
  • I. T. Shagautdinova
  • E. M. Antonova
  • O. N. Grechukhina
  • V. V. Tuchin
Article

Abstract

The interaction of an immersion agent such as glycerin with collagen mimetic peptide ((GPH)9)3 and a fragment of microfibril 5((GPH)12)3 is studied by the classical molecular dynamics method using GROMACS software. The change in the geometric parameters of collagen α-chains at various concentrations of an aqueous solution of glycerin is analyzed. It is shown that these changes nonlinearly depend on the concentration and have a maximum that fit well with experimental data on the efficiency of the optical clearing of a human skin. A reason for the decrease in the efficiency of skin optical clearing at high immersion-agent concentrations is proposed. The molecular mechanism of the immersion optical clearing of biological tissues is discussed.

Keywords

molecular modeling immersion optical clearing of biological tissues glycerin collagen molecular dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Hirshburg, PhD Thesis (Texas A&M Univ., College Station, TX, 2009).Google Scholar
  2. 2.
    Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, Ed. by V. V. Tuchin (CRC Press, 2009).Google Scholar
  3. 3.
    V. V. Tuchin, Optical Clearing of Tissues and Blood (SPIE Press, Bellingham, WA, 2006.).Google Scholar
  4. 4.
    D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, Laser Photonics Rev. 7 (5), 732 (2013). doi 10.1002/lpor.201200056CrossRefGoogle Scholar
  5. 5.
    E. A. Genina, A. N. Bashkatov, Yu. P. Sinichkin, I. Yu. Yanina, and V. V. Tuchin, J. Biomed. Photonics Eng. 1 (1), 22 (2015). doi 10.1002/lpor.201200056CrossRefGoogle Scholar
  6. 6.
    E. A. Genina, A. N. Bashkatov, V. I. Kochubey, and V. V. Tuchin, Opt. Spectrosc. 98 (3), 470 (2005).CrossRefGoogle Scholar
  7. 7.
    E. A. Genina, A. N. Bashkatov, Yu. P. Sinichkin, and V. V. Tuchin, Kvantovaya Elektron. 36 (12), 1119 (2006). doi 10.1070/QE2006v036n12ABEH013337CrossRefGoogle Scholar
  8. 8.
    E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, Adv. Opt. Technol. 2008, 267867 (2008). doi 10.1155/2008/267867CrossRefGoogle Scholar
  9. 9.
    A. N. Bashkatov, E. A. Genina, V. V. Tuchin, and G. B. Altshuler, Laser Phys. 19 (6), 1312 (2009). doi 10.1134/S1054660X09060231CrossRefGoogle Scholar
  10. 10.
    X. Wen, V. V. Tuchin, Q. Luo, and D. Zhu, Phys. Med. Biol. 54 (22), 6917 (2009). doi 10.1088/0031-9155/54/22/011CrossRefGoogle Scholar
  11. 11.
    N. Sudheendran, M. Mohamed, M. G. Ghosn, V. V. Tuchin, and K. V. Larin, J. Innovative Opt. Health Sci. 3 (3), 169 (2010). doi 10.1142/S1793545810001039CrossRefGoogle Scholar
  12. 12.
    G. V. Simonenko, E. S. Kirillova, and V. V. Tuchin, Opt. Mem. Neural Networks 18 (2), 12 (2009). doi 10.3103/S1060992X09020106CrossRefGoogle Scholar
  13. 13.
    D. K. Tuchina, R. Shi, A. N. Bashkatov, E. A. Genina, D. Zhu, Q. Luo, and V. V. Tuchin, J. Biophotonics 8 (4), 273 (2015). doi 10.1002/jbio.201400138CrossRefGoogle Scholar
  14. 14.
    X. Wen, Z. Mao, Z. Han, V. V. Tuchin, and D. Zhu, J. Biophotonics 3 (1–2), 44 (2010). doi 10.1002/jbio.200910080Google Scholar
  15. 15.
    K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, V. V. Nechaev, A. M. Likhter, I. T. Shagautdinova, E. Yu. Stepanovich, O. N. Grechukhina, and V. V. Tuchin, Proc. SPIE 10336, 103360J-1 (2017). doi 10.1117/12.2267979Google Scholar
  16. 16.
    K. Okuyama, K. Miyama, K. Mizuno, and H. P. Bachinger, Biopolymers 97 (8), 607 (2012). doi 10.1002/bip.22048CrossRefGoogle Scholar
  17. 17.
    J. M. Chen, C. E. Kung, S. H. Feairheller, and E. M. Brown, J. Protein Chem. 10 (5), 535 (1991). doi 10.1007/BF01025482CrossRefGoogle Scholar
  18. 18.
    W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc. 117 (19), 5179 (1995). doi 10.1021/ja00124a002CrossRefGoogle Scholar
  19. 19.
    V. D. Genin, D. K. Tuchina, A. J. Sadeq, E. A. Genina, V. V. Tuchin, and A. N. Bashkatov, J. Biomed. Photonics Eng. 2 (1), 010303 (2016). doi 10.18287/JBPE16.02.010303CrossRefGoogle Scholar
  20. 20.
    E. Youn, T. Son, H.-S. Kim, and B. Jung, Proc. SPIE 8207, 82070J (2012). doi 10.1117/12.909790Google Scholar
  21. 21.
    A. D. Becke, J. Chem. Phys. 98 (7), 5648 (1993). doi 10.1063/1.464913CrossRefGoogle Scholar
  22. 22.
    C. Lee, W. Yangand, and R. G. Parr, Phys. Rev. B 37 (2), 785 (1988). doi 10.1103/PhysRevB.37.785CrossRefGoogle Scholar
  23. 23.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, et al., Gaussian 09, Revision A.02 (Gaussian, Pittsburgh, PA, 2009).Google Scholar
  24. 24.
    D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, E. A. Mark, and H. J. C. Berendsen, J. Comput. Chem. 26 (16), 1701 (2005). doi 10.1002/jcc.20291CrossRefGoogle Scholar
  25. 25.
    Y. Duan, C. Wu, S. Chowdhury, M. C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, et al., J. Comput. Chem. 24 (16), 1999 (2003). doi 10.1002/jcc.10349CrossRefGoogle Scholar
  26. 26.
    H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91 (2), 6269 (1987). doi 10.1021/j100308a038CrossRefGoogle Scholar
  27. 27.
    H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, J. Chem. Phys. 81 (8), 3884 (1984). doi 10.1063/1.448118CrossRefGoogle Scholar
  28. 28.
    W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14 (1), 33 (1996). doi 10.1016/0263-7855(96)00018-5CrossRefGoogle Scholar
  29. 29.
    A. Bondi, J. Phys. Chem. 68 (3), 441 (1964). doi 10.1021/j100785a001CrossRefGoogle Scholar
  30. 30.
    H. D. Loof, L. Nilssonand, and R. Rigler, J. Am. Chem. Soc. 114 (11), 4028 (1992). doi 10.1021/ja00037a002CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • K. N. Dvoretsky
    • 1
  • K. V. Berezin
    • 2
    • 3
  • M. L. Chernavina
    • 2
  • A. M. Likhter
    • 3
  • I. T. Shagautdinova
    • 3
  • E. M. Antonova
    • 3
  • O. N. Grechukhina
    • 6
  • V. V. Tuchin
    • 2
    • 4
    • 5
  1. 1.Saratov State Medical University named after V.I. RazumovskySaratovRussia
  2. 2.National Research Saratov State University named after N.G. ChernyshevskySaratovRussia
  3. 3.Astrakhan State UniversityAstrakhanRussia
  4. 4.Institute of Precision Mechanics and ControlRussian Academy of SciencesSaratovRussia
  5. 5.National Research Tomsk State UniversityTomskRussia
  6. 6.Caspian Institute for Marine and River TransportAstrakhanRussia

Personalised recommendations