Advertisement

Estimating the Enantiomorphic Excess in Polycrystalline Metal Samples with a B20-Type Structure

  • N. M. Chubova
  • V. A. Dyadkin
  • S. V. Grigoriev
Article
  • 6 Downloads

Abstract

The degree of enantiomorphic excess (average chirality 〈Γ〉)in bulk polycrystalline Fe1–xCoxSi samples with a cobalt concentration of x = 0.10, 0.15, 0.20, 0.25, 0.30, and 0.50 is studied. Polycrystals are synthesized by melting the initial high-purity components. Surface examination of the samples showed that they are composed of acicular coaxially oriented crystallites with an average volume of ~2 mm3. The magnetic chirality γ, which is directly related to the crystallographic chirality Γ as γ =–Γ, is measured using small-angle polarized neutron diffraction. It is established that the average chirality of polycrystals 〈γ〉 is independent of the Co concentration within the statistical precision of the number of crystallites in the samples used in the experiment. The chirality of individual polycrystallites is distinct from zero and sometimes reaches 10–20%, being determined by the total number of crystallites in a sample (~100). The measurement error of the average chirality 〈γ〉 is determined by neutron scattering statistics and does not exceed 1%.

Keywords

crystallographic chirality magnetic chirality small-angle neutron scattering polarization enantiomer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Arago, Mem. Cl. Sci. Math. Phys. Inst. 12, 93 (1811).Google Scholar
  2. 2.
    A. M. Glazer and K. Stadnikca, J. Appl. Crystallogr. 19, 108 (1986).CrossRefGoogle Scholar
  3. 3.
    Y. Tanaka, T. Takeuchi, S. W. Lovesey, et al., Phys. Rev. Lett. 100, 145502 (2008).CrossRefGoogle Scholar
  4. 4.
    G. Iftime, F. L. Labarthet, A. Natansohn, and P. Rochon, J. Am. Chem. Soc. 122, 12646 (2000).CrossRefGoogle Scholar
  5. 5.
    K. Ray, S. Ananthavel, D. H. Waldeck, and R. Naaman, Science 283, 814 (1999).CrossRefGoogle Scholar
  6. 6.
    M. Decker, M. W. Klein, M. Wegener, and S. Linden, Opt. Lett. 32 (7), 856 (2007).CrossRefGoogle Scholar
  7. 7.
    H. D. Flack, Acta Crystallogr., Sect. A: Found. Crystallogr. 39 (6), 876 (1983).CrossRefGoogle Scholar
  8. 8.
    H. D. Flack and G. Bernardinelli, Acta Crystallogr., Sect. A: Found. Crystallogr. 55 (5), 908 (1999).CrossRefGoogle Scholar
  9. 9.
    H. D. Flack, Acta Crystallogr., Sect. A: Found. Crystallogr. 43 (4), 564 (1987).CrossRefGoogle Scholar
  10. 10.
    H. D. Flack and D. Schwarzenbach, Acta Crystallogr., Sect. A: Found. Crystallogr. 44 (4), 499 (1988).CrossRefGoogle Scholar
  11. 11.
    H. D. Flack and G. Bernardinelli, J. Appl. Crystallogr. 33 (4), 1143 (2000).CrossRefGoogle Scholar
  12. 12.
    U. Shmueli and H. D. Flack, Acta Crystallogr., Sect. A: Found. Crystallogr. 63 (3), 257 (2007).CrossRefGoogle Scholar
  13. 13.
    H. D. Flack and G. Bernardinelli, Acta Crystallogr., Sect. A: Found. Crystallogr. 64 (4), 484 (2008).CrossRefGoogle Scholar
  14. 14.
    U. Shmueli, M. Schiltz, and H. D. Flack, Acta Crystallogr., Sect. A: Found. Crystallogr. 64 (4), 476 (2008).CrossRefGoogle Scholar
  15. 15.
    D. Coster, K. S. Knol, and J. A. Prins, Z. Phys. A 63 (5), 345 (1930).CrossRefGoogle Scholar
  16. 16.
    S. V. Grigoriev, D. Chernyshov, V. A. Dyadkin, et al., Phys. Rev. Lett. 102, 037204 (2009).CrossRefGoogle Scholar
  17. 17.
    S. V. Grigoriev, D. Chernyshov, V. A. Dyadkin, et al., Phys. Rev. B 81, 012408 (2010).CrossRefGoogle Scholar
  18. 18.
    V. A. Dyadkin, S. V. Grigoriev, D. Menzel, et al., Phys. Rev. B 84, 014435 (2011).CrossRefGoogle Scholar
  19. 19.
    J. Beille, D. Bloch, F. Towfio, and J. Voiron, J. Magn. Magn. Mater. 10, 265 (1979).CrossRefGoogle Scholar
  20. 20.
    P. Bak and M. H. Jensen, J. Phys. C: Solid State Phys. 13, 881 (1980).CrossRefGoogle Scholar
  21. 21.
    S.-A. Siegfried, E. V. Altynbaev, N. M. Chubova, et al., Phys. Rev. B 91, 184406 (2015).CrossRefGoogle Scholar
  22. 22.
    S. V. Maleev, Usp. Fiz. Nauk 172 (6), 617 (2002).CrossRefGoogle Scholar
  23. 23.
    S. V. Grigoriev, N. M. Potapova, S.-A. Siegfried, et al., Phys. Rev. Lett. 110, 207201 (2013).CrossRefGoogle Scholar
  24. 24.
    M. Tanaka, H. Takayoshi, M. Ishida, and Y. Endoh, J. Phys. Soc. Jpn. 54, 2970 (1985).CrossRefGoogle Scholar
  25. 25.
    V. A. Dyadkin, S. V. Grigoriev, D. Menzel, et al., Phys. B (Amsterdam, Neth.) 406, 2385 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. M. Chubova
    • 1
  • V. A. Dyadkin
    • 2
  • S. V. Grigoriev
    • 1
    • 3
  1. 1.Konstantinov Saint-Petersburg Institute of Nuclear PhysicsRussian Research Center Kurchatov InstituteGatchina, Leningrad oblastRussia
  2. 2.Swiss-Norwegian BeamlinesEuropean Synchrotron Radiation FacilityGrenobleFrance
  3. 3.Saint-Petersburg State UniversitySaint-PetersburgRussia

Personalised recommendations