Advertisement

Space Technological System with Remote Energy Supply Via a Wireless Laser Channel

  • R. A. Evdokimov
  • V. A. Kornilov
  • A. A. Lobykin
  • V. U. Tugaenko
Article
  • 8 Downloads

Abstract

The remote energy supply of a technological module via a wireless laser channel is demonstrated to be the most promising method for achieving an acceptable level of microgravity (~10–7g) aboard a spacecraft (SC) to perform experiments in the fields of the physics of liquids and space material science. The possible configuration of such a SC and wireless electrical-energy-transfer system are discussed. The requirements to the given system, the characteristics of its components, and the possibility of their implementation at the current level of technology are analyzed. The space experiment whereby the wireless electrical-energy-transfer technology is tried out using the Russian segment of the International Space Station is described.

Keywords

microgravity technological spacecraft wireless energy transfer laser radiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. S. Avduevskii and G. R. Uspenskii, Space Industry (Mashinostroenie, Moscow, 1989) [in Russian].Google Scholar
  2. 2.
    A. Karchmer and C. P. Schafer, International Space Station Microgravity Research Requirements, AIAA-99-0571 (1999).Google Scholar
  3. 3.
    International Space Station User’s Guide Release 2.0, (NASA, Houston, TX, 2000)Google Scholar
  4. 4.
    V. S. Zemskov, I. N. Belokurova, M. P. Raukhman, et al., in Proc. 7th Russian Symposium “Microgravity Mechanics. Totals and Trends for Fundamental Investigating Gravity-Sensitive Systems” (Ishlinsky Institute for Problems in Mechanics Russ. Acad. Sci., Moscow, 2000), p. 425 [in Russian].Google Scholar
  5. 5.
    V. S. Zemskov, in Proc. 2nd Russian Conference on Space Materials Science (KM-2003) (Scientific Research Center for Space Materials Science, Kaluga, 2003), p. 56 [in Russian].Google Scholar
  6. 6.
    E. V. Zharikov, A. S. Senchenkov, and A. V. Egorov, in Proc. 2nd Russian Conference on Space Materials Science (KM-2003) (Scientific Research Center for Space Materials Science, Kaluga, 2003), p. 26 [in Russian].Google Scholar
  7. 7.
    A. V. Abrashkin and A. S. Zaitsev, Kosmonavt. Raketostr., No. 3 (40), 124 (2005).Google Scholar
  8. 8.
    A. A. Lobykin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 3 (1), 154 (2009).CrossRefGoogle Scholar
  9. 9.
    N. A. Bryukhanov, V. V. Tsvetkov, M. Yu. Belyaev, et al., Preprint No. 43, IPM RAN (Keldysh Institute of Applied Mathematics Russ. Acad. Sci., Moscow, 2004).Google Scholar
  10. 10.
    N. A. Bryukhanov, V. V. Tsvetkov, M. Yu. Belyaev, et al., Preprint No. 83, IPM RAN (Keldysh Institute of Applied Mathematics Russ. Acad. Sci., Moscow, 2005).Google Scholar
  11. 11.
    K. S. Elkin, V. L. Levtov, A. A. Lobykin, et al., Izv. Ross. Akad. Nauk, Energ., No. 3, 106 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • R. A. Evdokimov
    • 1
  • V. A. Kornilov
    • 1
  • A. A. Lobykin
    • 1
  • V. U. Tugaenko
    • 1
  1. 1.S.P. Korolev Rocket and Space Corporation “Energy”Korolev, Moscow oblastRussia

Personalised recommendations