Advertisement

Butyl-Xanthate Adsorption on the Surface of Sulfide Minerals under Conditions of their Preliminary Treatment with Water Electrolysis Products according to Atomic-Force Microscopy and Infrared Fourier Spectroscopy Data

  • E. V. Koporulina
  • M. V. Ryazantseva
  • E. L. Chanturiya
  • E. S. Zhuravleva
Article
  • 9 Downloads

Abstract

The morphology of sphalerite, galena, and chalcopyrite surfaces and the features of potassium butyl xanthate (PBX) adsorption on them under conditions of preliminary mineral treatment with water electrolysis products are studied using atomic-force microscopy and diffuse reflectance IR (infrared) Fourier spectroscopy. It is revealed that practically all types of treatment with electrochemically modified water (the product of non-diafragm treatment, anolyte, and catholyte) coarsens the surface relief of the minerals due to the formation of surface aggregates with different sizes. On the contrary, after chalcopyrite is treated with anolyte, its surface relief become smoother. It is found that water electrolysis products differently affect the chemical and physical types of PBX adsorption on the surface of the minerals under investigation. The performed experiments indicate that a complex of atomic-force microscopy and IR Fourier spectroscopy techniques is an efficient ex situ approach for monitoring the surface state of sulfide minerals and the direct study of PBX adsorption products.

Keywords

polymetallic ores sulfides potassium butyl xanthate atomic-force microscopy surface roughness IR Fourier spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Chanturiya, Obogashch. Rud, No. 6, 3 (2000).Google Scholar
  2. 2.
    V. A. Bocharov and M. Ya. Ryskin, Technology for Conditioning and Selective Floating Nonferrous Metal Ores (Nedra, Moscow, 1993) [in Russian].Google Scholar
  3. 3.
    V. A. Bocharov and V. A. Ignatkina, Technology for Gold-Bearing Rock Enriching (Ruda i Metally, Moscow, 2003) [in Russian].Google Scholar
  4. 4.
    V. A. Chanturiya, Gorn. Zh., No. 7, 29 (2015).CrossRefGoogle Scholar
  5. 5.
    V. A. Chanturiya and I. Zh. Bunin, in Proc. All-Russian Scientific and Practical Conference “New Technologies for Earth Sciences” (Novyi Afon, 2012), p. 143.Google Scholar
  6. 6.
    E. L. Chanturiya, A. A. Vishkova, P. P. Anan’ev, E. S. Tomskaya, and E. V. Koporulina, Gorn. Zh., No. 12, 63 (2014).Google Scholar
  7. 7.
    I. Zh. Bunin, V. A. Chanturiya, M. V. Ryazantseva, E. V. Koporulina, and I. A. Khabarova, Bull. Russ. Acad. Sci.: Phys. 79 (6), 723 (2015).CrossRefGoogle Scholar
  8. 8.
    V. A. Chanturiya, I. Zh. Bunin, M. V. Ryazantseva, I. A. Khabarova, E. V. Koporulina, and N. E. Anashkina, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 3, 154 (2014).Google Scholar
  9. 9.
    E. L. Chanturiya, V. A. Chanturiya, and E. S. Zhuravleva, Tsvetn. Met. (Moscow, Russ. Fed.), No. 1, 13 (2016).Google Scholar
  10. 10.
    A. A. Abramov, Theoretical Foundations for Optimizing Selective Floatation of Sulfide Ores (Nedra, Moscow, 1978) [in Russian].Google Scholar
  11. 11.
    V. A. Chanturiya, The Way for Testing Ore Pulp Composition under Floatation (Nauka, Moscow, 1974), p. 26 [in Russian].Google Scholar
  12. 12.
    V. A. Chanturiya and V. E. Vigdergauz, Electrochemistry of Sulfides. Theory and Practice of Floatation (Ruda i Metally, Moscow, 2008) [in Russian].Google Scholar
  13. 13.
    I. N. Plaksin, R. Sh. Shafeev, and V. A. Chanturiya, Effect of Minerals’ Surface Heterogeneity on Interaction with Floatation Reagents (Nauka, Moscow, 1965) [in Russian].Google Scholar
  14. 14.
    K. M. Rosso and D. J. Vaughan, Rev. Mineral. Geochem. 61, 557 (2006).CrossRefGoogle Scholar
  15. 15.
    R. St. C. Smart, J. Amarantidis, C. A. Prestidge, L. LaVanier, and S. Grano, Top. Appl. Phys. 85 (4), 3 (2003).CrossRefGoogle Scholar
  16. 16.
    G. Gudici and P. Zuddas, Geochim. Cosmochim. Acta 65 (9), 1381 (2001).CrossRefGoogle Scholar
  17. 17.
    Y. L. Mikhlin, A. A. Karacharov, and M. N. Likhatski, Int. J. Miner. Process. 144, 81 (2015).CrossRefGoogle Scholar
  18. 18.
    J. Zhang and W. Zhang, in Microscopy: Science, Technology, Applications and Education, Ed. by A. Méndez-Vilas and J. Díaz (FORMATEX, Badajoz, 2010), Vol. 3, p 2028.Google Scholar
  19. 19.
    B. Jähne, Digital Image Processing (Springer, Berlin, Heidelberg, 2005).Google Scholar
  20. 20.
    C. M. Bishop, Neural Networks for Pattern Recognition (Oxford Univ. Press, Oxford, 1995).Google Scholar
  21. 21.
    A. P. Chuklanov, P. A. Borodin, S. A. Ziganshina, and A. A. Bukharaev, Uch. Zap. Kazan. Gos. Univ. 150 (2), 220 (2008).Google Scholar
  22. 22.
    A. N. Buckley, R. Woods, and H. J. Wouterlood, in Proc. Int. Symposium “Electrochemistry in Mineral and Metal Processing II” (Pennington, 1998), p. 211.Google Scholar
  23. 23.
    A. N. Buckley, R. Woods, and H. J. Wouterlood, Int. J. Miner. Process. 26, 29 (1989).CrossRefGoogle Scholar
  24. 24.
    I. Kartio, K. Laajalehto, T. Kaurila, and E. Suoninen, Appl. Surf. Sci. 93, 167 (1996).CrossRefGoogle Scholar
  25. 25.
    K. Laajalehto, R. S. C. Smart, J. Ralston, and E. Suoninen, Appl. Surf. Sci. 64, 29 (1993).CrossRefGoogle Scholar
  26. 26.
    A. N. Buckley and R. Woods, Appl. Surf. Sci. 17, 401 (1984).CrossRefGoogle Scholar
  27. 27.
    J. Mielczarski, Int. J. Miner. Process. 16, 179 (1986).CrossRefGoogle Scholar
  28. 28.
    J. M. Cases and P. De Donato, Int. J. Miner. Process. 33, 49 (1991).CrossRefGoogle Scholar
  29. 29.
    Ya. Zhang, Zh. Cao, Y. Cao, and Ch. Sun, Int. J. Miner. Process. 248, 434 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. V. Koporulina
    • 1
  • M. V. Ryazantseva
    • 1
  • E. L. Chanturiya
    • 2
  • E. S. Zhuravleva
    • 1
  1. 1.Research Institute of Comprehensive Exploitation of Mineral ResourcesRussian Academy of SciencesMoscowRussia
  2. 2.National University of Science and Technology MISISMoscowRussia

Personalised recommendations