Study of the Initial Stage of Fluorinated C60F18 Fullerene Adsorption on the Cu(001) Surface

  • S. I. OreshkinEmail author
  • D. A. Muzychenko
  • A. I. Oreshkin
  • V. I. Panov
  • V. A. Yakovlev
  • R. Z. Bakhtizin


The dynamics of the adsorption and evolution of fluorinated C60F18 fullerene molecules on the Cu(001) surface are studied by real-time ultra-high vacuum scanning tunneling microscopy. Fluorinated fullerene molecules are shown to decompose with time on the Cu(001) surface transforming to C60 molecules. The decay rate depends on the initial molecular coverage. The rapid decay of fluorinated fullerene molecules is observed when the coverage is no higher than 0.2 single layers. As a result, two-dimensional islands consisting of pure C60 molecules are formed on the Cu(001) surface. 2D islands consisting of fluorinated fullerene molecules are formed when the initial molecular coverage is higher than 0.5 single layers. The molecules inside these islands also tend to decompose with time. It is found experimentally that fluorine atoms are removed completely from the initial C60F18 molecules adsorbed on the Cu(001) surface after 250 h when the initial molecular coverage is 0.6 single layers.


scanning tunneling microscopy fluorinated fullerenes island nanostructures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Strobel, M. Riedel, J. Ristein, et al., Diamond Relat. Mater. 14, 451 (2005).CrossRefGoogle Scholar
  2. 2.
    M. T. Edmonds, M. Wanke, A. Tadich, et al., J. Chem. Phys. 136, 124701 (2012).CrossRefGoogle Scholar
  3. 3.
    S. J. Sque, R. Jones, J. P. Goss, et al., J. Phys.: Condens. Matter 17, L21 (2005).Google Scholar
  4. 4.
    T. Ouyang, K. P. Loh, D. Qi, et al., ChemPhysChem 9, 1286 (2008).CrossRefGoogle Scholar
  5. 5.
    A. Tadich, M. T. Edmonds, L. Ley, et al., Appl. Phys. Lett. 102, 241601 (2013).CrossRefGoogle Scholar
  6. 6.
    A. Gunther, M. Sawatzki, P. Formánek, et al., Adv. Funct. Mater. 26 (5), 768 (2016).CrossRefGoogle Scholar
  7. 7.
    K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, Chem. Rev. 107 (4), 1233 (2007).CrossRefGoogle Scholar
  8. 8.
    J. T. Sadowski, Y. Fujikawa, K. F. Kelly, et al., J. Cryst. Growth 229, 580 (2001).CrossRefGoogle Scholar
  9. 9.
    Y. Fujikawa, J. T. Sadowski, K. F. Kelly, et al., Surf. Sci. 521, 43 (2002).CrossRefGoogle Scholar
  10. 10.
    A. I. Oreshkin, R. Z. Bakhtizin, P. Murugan, et al., JETP Lett. 92, 449 (2010).CrossRefGoogle Scholar
  11. 11.
    R. Z. Bakhtizin, A. I. Oreshkin, P. Murugan, et al., Chem. Phys. Lett. 482, 307 (2009).CrossRefGoogle Scholar
  12. 12.
    A. I. Oreshkin, R. Z. Bakhtizin, V. N. Mantsevich, et al., JETP Lett. 95, 748 (2012).CrossRefGoogle Scholar
  13. 13.
    T. K. Shimizu, J. Jung, T. Otani, et al., ACS Nano 6, 2679 (2012).CrossRefGoogle Scholar
  14. 14.
    I. Neretin, K. Lyssenko, M. Antipin, et al., Angew. Chem., Int. Ed. 39 (18), 3273 (2000).CrossRefGoogle Scholar
  15. 15.
    M. Abel, A. Dmitriev, R. Fasel, et al., Phys. Rev. B 67, 245407 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. I. Oreshkin
    • 1
    Email author
  • D. A. Muzychenko
    • 2
  • A. I. Oreshkin
    • 2
  • V. I. Panov
    • 2
  • V. A. Yakovlev
    • 3
  • R. Z. Bakhtizin
    • 4
  1. 1.Sternberg Astronomical Institute (GAISh)MoscowRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  4. 4.Institute of Physics and TechnologyBashkir State UniversityUfaRussia

Personalised recommendations