Advertisement

Diagnostics of the Phase Composition of Lead-Zirconate-Titanate Films according to Raman Spectra: Phase Identification

  • V. G. Beshenkov
  • A. G. Znamenskii
  • A. V. Irzhak
  • V. A. Marchenko
Article
  • 8 Downloads

Abstract

The problem concerning the diagnostics of the phase composition of lead-zirconate-titanate (PZT) films under conditions of overlapping Raman spectra is solved via applied mathematical statistics. The proposed phase-identification method based on reference spectra is implemented using different Raman-spectrum regions measured on the surface of multiphase PZT films. It is demonstrated that the identification of phases, as well as determination of their concentration, must be performed using the spectral range in which the calculated first principal components of the set of Raman spectra differ to the greatest extent from each other.

Keywords

Raman spectroscopy spectrum overlapping principal-component method phase identification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. G. Beshenkov, A. F. Vyatkin, A. G. Znamenskii, and V. A. Marchenko, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2 (1), 25 (2008).Google Scholar
  2. 2.
    G. Burns and B. A. Scott, Phys. Rev. Lett. 25, 1191 (1970). doi 10.1103/PhysRevLett.25.1191CrossRefGoogle Scholar
  3. 3.
    G. Burns and B. A. Scott, Phys. Rev. B 7, 3088 (1973). doi 10.1103/PhysRevB.7.3088CrossRefGoogle Scholar
  4. 4.
    I. Taguchi, A. Pignolet, L. Wang, et al., J. Appl. Phys. 74, 6625 (1993). doi 10.1063/1.355103CrossRefGoogle Scholar
  5. 5.
    F. A. G. Souza, K. C. V. Lima, A. P. Ayala, et al., Phys. Rev. B 66, 132107 (2002). doi 10.1103/Phys-RevB.66.132107CrossRefGoogle Scholar
  6. 6.
    J. Lappalainen, J. Frantti, J. Hiltunen, et al., Ferroelectrics 335, 149 (2006). doi 10.1080/00150190600689720CrossRefGoogle Scholar
  7. 7.
    R. Merlin, J. A. Sanjurjo, and A. Pinczuk, Solid State Commun. 16, 931 (1975). doi 10.1016/0038-1098(75)90897-2CrossRefGoogle Scholar
  8. 8.
    V. N. Detsik, E. Yu. Kaptelov, S. A. Kukushkin, et al., Fiz. Tverd. Tela 39 (1), 121 (1997).Google Scholar
  9. 9.
    I. P. Pronin, E. Yu. Kaptelov, S. V. Senkevich, et al., Phys. Solid State 52 (1), 132 (2010).CrossRefGoogle Scholar
  10. 10.
    E. R. Malinowski and D. G. Howery, Factor Analysis in Chemistry (John Wiley and Sons, New York, 1980).Google Scholar
  11. 11.
    V. G. Beshenkov, A. G. Znamenskii, A. V. Irzhak and V. A. Marchenko, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12 (1), 159 (2018). doi 10.1134/S1027451018010238CrossRefGoogle Scholar
  12. 12.
    V. G. Beshenkov, A. A. Burlakov, A. G. Znamenskii, and V. A. Marchenko, Tech. Phys. Lett. 40 (8), 644 (2014).CrossRefGoogle Scholar
  13. 13.
    S. A. Aivazyan, V. M. Bukhshtaber, I. S. Enyukov, and L. D. Meshalkin, Applied Statistics: Classification and Dimensionality Reduce (Finansy i Statistika, Moscow, 1989) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. G. Beshenkov
    • 1
  • A. G. Znamenskii
    • 1
  • A. V. Irzhak
    • 1
  • V. A. Marchenko
    • 1
  1. 1.Institute of Microelectronics Technology and High Purity MaterialsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations