Advertisement

X-Ray Topography: Yesterday, Today, and Prospects for the Future

  • E. V. Suvorov
Article
  • 2 Downloads

Abstract

X-ray topography is a set of X-ray diffraction techniques that make it possible to see images of defects, to determine their type and location in the volume of the crystal structure or on its surface, and to measure their main characteristics. The review discusses the possibilities, limitations, and prospects of X-ray topography methods.

Keywords

X-ray diffraction microscopy synchrotron radiation Fujiwara method Berg–Barrett method Schulz method Borrmann method Lang method quasi-planar waves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Guinier, Theorie et technique de la radiocristallographie (Dunod, Paris, 1956).Google Scholar
  2. 2.
    Ya. S. Umanskii, X-Ray Radiography of Metals (Metallurgiya, Moscow, 1967) [in Russian].Google Scholar
  3. 3.
    V. I. Iveronova and G. P. Revkevich, Theory of X-ray Scattering (Moscow State Univ., Moscow, 1972) [in Russian].Google Scholar
  4. 4.
    W. Berg, Naturwissenschaften 19, 391 (1931).CrossRefGoogle Scholar
  5. 5.
    W. Berg, Z. Kristallogr. 89 (3), 286 (1934).Google Scholar
  6. 6.
    K. Kohra, J. Phys. Soc. Jpn. 17, 589 (1962).CrossRefGoogle Scholar
  7. 7.
    C. S. Barrett, Trans. AIME 161, 15 (1945).Google Scholar
  8. 8.
    L. G. Schulz, Trans. AIME 200, 1082 (1954).Google Scholar
  9. 9.
    T. Fujiwara, Mem. Def. Acad., Math., Phys., Chem. Eng. (Yokosuka, Jpn.) 2 (5), 127 (1963).Google Scholar
  10. 10.
    T. Fujiwara, S. Dohi, and T. Takeda, Mem. Def. Acad., Math., Phys., Chem. Eng. (Yokosuka, Jpn.) 3 (2), 17 (1963).Google Scholar
  11. 11.
    A. P. Turner, T. Vreeland, and D. P. Pope, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 24 (4), 452 (1968).CrossRefGoogle Scholar
  12. 12.
    U. Bonse, Z. Phys. 153 (2), 278 (1958).CrossRefGoogle Scholar
  13. 13.
    K. Kohra and S. Kikuta, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 24, 200 (1968).CrossRefGoogle Scholar
  14. 14.
    G. Borrmann, Z. Phys. 42, 157 (1941).Google Scholar
  15. 15.
    A. R. Lang, Acta Crystallogr. 12, 249 (1959).CrossRefGoogle Scholar
  16. 16.
    V. M. Gundyrev, N. V. Belova, and V. O. Esin, USSR Inventor’s Certificate No. 300817, Byull. Izobret., No. 13 (1971).Google Scholar
  17. 17.
    I. M. Shmyt’ko, V. Sh. Shekhtman, Yu. A. Ossipyan, and N. S. Afonikova, Ferroelectrics 96, 151 (1989).CrossRefGoogle Scholar
  18. 18.
    Yu. A. Osip’yan, V. Sh. Shekhtman, and I. M. Shmyt’ko, Pis’ma Zh. Eksp. Teor. Fiz. 47 (10), 501 (1988).Google Scholar
  19. 19.
    N. S. Afonikova, V. V. Borovkov, and I. M. Shmyt’ko, Fiz. Tverd. Tela 29 (3), 813 (1987).Google Scholar
  20. 20.
    N. S. Afonikova, V. Sh. Shekhtman, and I. M. Shmyt’ko, Fiz. Tverd. Tela 27 (11), 3201 (1985).Google Scholar
  21. 21.
    E. V. Suvorov and I. A. Smirnova, Usp. Fiz. Nauk 185 (9), 897 (2015).CrossRefGoogle Scholar
  22. 22.
    V. M. Kaganer, N. O. Krylova, V. L. Indenbom, and I. L. Shul’pina, Fiz. Tverd. Tela 28 (8), 2343 (1986).Google Scholar
  23. 23.
    I. L. Shulpina, J. Appl. Phys. A 26 (4), 82 (1993).Google Scholar
  24. 24.
    E. V. Suvorov and I. L. Shul’pina, Poverkhnost, No. 7, 3 (2001).Google Scholar
  25. 25.
    I. A. Prokhorov, I. L. Shulpina, V. I. Strelov, et al., Phys. Status Solidi A 6, 1902 (2005).CrossRefGoogle Scholar
  26. 26.
    I. L. Shulpina and E. V. Suvorov, Bull. Russ. Acad. Sci.: Phys. 74 (11), 1488 (2010).CrossRefGoogle Scholar
  27. 27.
    I. L. Shul’pina, S. S. Rouvimov, and R. N. Kyutt, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 4 (1), 32 (2010).CrossRefGoogle Scholar
  28. 28.
    I. L. Shul’pina, V. V. Ratnikov, V. A. Kozlov, et al., Tech. Phys. 59 (10), 1566 (2014).CrossRefGoogle Scholar
  29. 29.
    L. I. Datsenko, V. B. Molodkin, and M. E. Osinovskii, Dynamic X-ray Scattering by means of Real Crystals (Naukova Dumka, Kiev, 1988) [in Russian].Google Scholar
  30. 30.
    L. N. Danil’chuk and T. A. Smorodina, Fiz. Tverd. Tela 7 (4), 1245 (1965).Google Scholar
  31. 31.
    L. N. Danil’chuk and V. I. Nikitenko, Fiz. Tverd. Tela 9 (7), 2027 (1967).Google Scholar
  32. 32.
    L. N. Danil’chuk, Fiz. Tverd. Tela 11, 3085 (1969).Google Scholar
  33. 33.
    L. N. Danil’chuk, Vestn. Novgorod. Gos. Univ., No. 1, 12 (1995).Google Scholar
  34. 34.
    A. N. Builov and L. N. Danil’chuk, Tech. Phys. Lett. 28 (9), 762 (2002).CrossRefGoogle Scholar
  35. 35.
    K. Kohra, M. Ando, and T. Matsushita, Nucl. Instrum. Methods 152, 161 (1978).CrossRefGoogle Scholar
  36. 36.
    A. Authier and A. R. Lang, J. Appl. Phys. 35, 1956 (1964).CrossRefGoogle Scholar
  37. 37.
    Y. Epelboin and A. Authier, Acta Crystallogr., Sect. A: Found. Crystallogr. 39, 767 (1983).CrossRefGoogle Scholar
  38. 38.
    E. V. Suvorov, V. I. Polovinkina, V. I. Nikitenko, and V. L. Indenbom, Phys. Status Solidi 26 (1), 385 (1974).CrossRefGoogle Scholar
  39. 39.
    M. Yoshmatsu, X-Ray Diffraction Micrography, The Lang Method (Rigacu Denki, Tokyo, 1964).Google Scholar
  40. 40.
    S. Sh. Gendelev, L. M. Dedukh, V. I. Nikitenko, et al., Izv. Akad. Nauk SSSR, Ser. Fiz. 35 (6), 1210 (1971).Google Scholar
  41. 41.
    N. Kato, J. Phys. Soc. Jpn. 19 (1), 67 (1964).CrossRefGoogle Scholar
  42. 42.
    N. Kato, J. Phys. Soc. Jpn. 19 (6), 971 (1964).CrossRefGoogle Scholar
  43. 43.
    A. Authier, Dynamical Theory of X-Ray Diffraction (Science Publ., Oxford, 2001).Google Scholar
  44. 44.
    V. L. Indenbom and F. N. Chukhovskii, Usp. Fiz. Nauk 107 (2), 229 (1972).CrossRefGoogle Scholar
  45. 45.
    V. L. Indenbom and F. N. Chukhovskii, Kristallografiya 16 (6), 1101 (1971).Google Scholar
  46. 46.
    V. G. Kohn, Crystallogr. Rep. 52 (4), 598 (2007).CrossRefGoogle Scholar
  47. 47.
    Y. Ando, J. R. Patel, and N. Kato, J. Appl. Phys. 44 (10), 4405 (1973).CrossRefGoogle Scholar
  48. 48.
    V. L. Indenbom, V. I. Nikitenko, E. V. Suvorov, and V. M. Kaganer, Phys. Status Solidi A 46 (1), 379 (1978).CrossRefGoogle Scholar
  49. 49.
    I. L. Shul’pina, Zavod. Lab., Diagn. Mater. 66 (2), 25 (2000).Google Scholar
  50. 50.
    M. G. Mil’vidskii, Yu. A. Osip’yan, I. A. Smirnova, et al., Poverkhnost, No. 6, 11 (2001).Google Scholar
  51. 51.
    I. L. Shul’pina, Zavod. Lab., Diagn. Mater. 73 (5), 30 (2007).Google Scholar
  52. 52.
    E. Rouv and J. Uiver, Usp. Fiz. Nauk 126 (2), 269 (1978).Google Scholar
  53. 53.
    I. M. Ternov, Usp. Fiz. Nauk 165 (4), 429 (1995).CrossRefGoogle Scholar
  54. 54.
    H. Winick, J. Synchrotron Radiat. 5, 168 (1998).CrossRefGoogle Scholar
  55. 55.
    G. V. Fetisov, Synchrotron Emission. Methods for Researching Matter Structure (Fizmatlit, Moscow, 2007) [in Russian].Google Scholar
  56. 56.
    Synchrotron Light Sources and Free-Electron Lasers. Accelerator Physics, Instrumentation and Science Applications, Ed. by E. J. Jaeschke, (Springer, 2016).Google Scholar
  57. 57.
    T. Tuomi, K. Naukkarinen, and P. Rabe, Phys. Status Solidi A 25 (1), 93 (1974).CrossRefGoogle Scholar
  58. 58.
    B. K. Tanner and M. A. Phil, X-Ray Diffraction Topography (Pergamon Press, New York, 1966).Google Scholar
  59. 59.
    D. K. Bowen and B. K. Tanner, High Resolution X-ray Diffractometry and Topography (Taylor & Francis, London, 1998).Google Scholar
  60. 60.
    J. Baruchel and J. Hartwig, J. Synchrotron Radiat. 9, 107 (2002).CrossRefGoogle Scholar
  61. 61.
    A. Zarka, B. Capelle, J. Detaint, and J. Schwartzel, J. Appl. Crystallogr. 21, 967 (1988).CrossRefGoogle Scholar
  62. 62.
    A. E. Voloshin, Doctoral Dissertation in Mathematics and Physics (A. V. Shubnikov Institute of Crystallography Russ. Acad. Sci., Moscow, 2013).Google Scholar
  63. 63.
    A. E. Blagov, P. A. Prosekov, A. V. Targonskii, and Ya. A. Eliovich, Crystallogr. Rep. 60 (2), 167 (2015).CrossRefGoogle Scholar
  64. 64.
    A. E. Blagov, Yu. V. Pisarevskii, and M. V. Koval’chuk, Crystallogr. Rep. 61 (2), 170 (2016).CrossRefGoogle Scholar
  65. 65.
    A. R. Lang and K. Reifsnide, Appl. Phys. Lett. 15 (8), 162 (1969).CrossRefGoogle Scholar
  66. 66.
    J. Chikawa and I. Fujmoto, Appl. Phys. Lett. 13 (11), 18 (1968).CrossRefGoogle Scholar
  67. 67.
    E. V. Suvorov, Elektron. Prom-st. 6, 49 (1979).Google Scholar
  68. 68.
    A. Koch, C. Raven, P. Spanne, and A. Snigirev, J. Opt. Soc. Am. A 15, 1940 (1998).CrossRefGoogle Scholar
  69. 69.
    Y. Amemiya, J. Synchrotron Radiat. 2, 13 (1995).CrossRefGoogle Scholar
  70. 70.
    S. M. Grunera, W. Mark, and E. F. Eikenberry, Rev. Sci. Instrum. 73 (8), 121 (2002).Google Scholar
  71. 71.
    R. C. Harrison, Nucl. Instrum. Methods Phys. Res., Sect. A 347, 529 (1994).CrossRefGoogle Scholar
  72. 72.
    S. Takagi, Acta Crystallogr. 15, 1311 (1962).CrossRefGoogle Scholar
  73. 73.
    D. Taupen, Bull. Soc. Fr. Mineral. Cristallogr. 87, 469 (1964).Google Scholar
  74. 74.
    E. V. Suvorov, Methods for Researching Real Structure and Composition of Materials (National Univ. of Science and Technology MISiS, Moscow, 2011) [in Russian].Google Scholar
  75. 75.
    V. E. Prun, A. V. Buzmakov, M. V. Chukalina, et al., Autom. Remote Control (Engl. Transl.) 74 (10), 1670 (2013).CrossRefGoogle Scholar
  76. 76.
    E. V. Suvorov and I. A. Smirnova, Tech. Phys. Lett. 42 (9), 955 (2016).CrossRefGoogle Scholar
  77. 77.
    J. C. H. Spense, Experimental High-Resolution Electron Microscopy (Claredon Press, Oxford, 1981).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations