On Enhancement of the Adsorption-Layer Effect at the Metallic Electrode−Liquid Electrolyte Interface in Specular Neutron Reflectometry Experiments

  • V. I. PetrenkoEmail author
  • Ye. N. Kosiachkin
  • L. A. Bulavin
  • M. V. Avdeev


The possibilities for optimizing the substrate/electrode/electrolyte structure are considered in order to obtain the maximum change in the specular-reflection curves obtained in neutron reflectometry experiments at the electrochemical interfaces between a metallic electrode and liquid electrolyte containing Li+ ions during their operation. The characteristic relations between the scattering length densities of the components, for which the reflection curves most fully provide information about the structure of the solid electrolyte interphase layer formed on the electrode surface during the charge–discharge processes, are determined and analyzed.


neutron reflectometry electrochemical interfaces lithium-ion energy storage devices solid electrolyte interphase layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Verma, P. Maire, and P. Novák, Electrochim. Acta 55, 6332 (2010).CrossRefGoogle Scholar
  2. 2.
    D. M. Itkis, J. J. Velasco-Velez, A. Knop-Gericke, A. Vyalikh, M. V. Avdeev, and L. V. Yashina, ChemElectroChem 2, 1427 (2015).CrossRefGoogle Scholar
  3. 3.
    A. M. Balagurov, I. A. Bobrikov, N. Y. Samoylova, O. A. Drozhzhin, and E. V. Antipov, Russ. Chem. Rev. 83, 1120 (2014).CrossRefGoogle Scholar
  4. 4.
    G. M. Veith, L. Baggetto, R. L. Sacci, R. R. Unocic, W. E. Tenhaeff, and J. F. Browning, Chem. Commun. 50, 3081 (2014).CrossRefGoogle Scholar
  5. 5.
    G. M. Veith, M. Doucet, J. K. Baldwin, R. L. Sacci, T. M. Fears, Y. Wang, and J. F. Browning, J. Phys. Chem. C 119, 20339 (2015).CrossRefGoogle Scholar
  6. 6.
    B.-K. Seidlhofer, B. Jerliu, M. Trapp, E. Hüger, S. Risse, R. Cubitt, H. Schmidt, R. Steitz, and M. Ballauff, ACS Nano 10, 7458 (2016).CrossRefGoogle Scholar
  7. 7.
    T. M. Fears, M. Doucet, J. F. Browning, J. K. S. Baldwin, J. G. Winiarz, H. Kaiser, H. Taub, R. L. Sacci, and G. M. Veith, Phys. Chem. Chem. Phys. 18, 13927 (2016).CrossRefGoogle Scholar
  8. 8.
    G. M. Veith, M. Doucet, R. L. Sacci, B. Vacaliuc, J. K. S. Baldwin, and J. F. Browning, Sci. Rep. 7, 6326 (2017).CrossRefGoogle Scholar
  9. 9.
    B. Jerliu, E. Hüger, M. Horisberger, J. Stahn, and H. Schmidt, J. Power Sources 359, 415 (2017).CrossRefGoogle Scholar
  10. 10.
    M. V. Avdeev, A. A. Rulev, V. I. Bodnarchuk, E. E. Ushakova, V. I. Petrenko, I. V. Gapon, O. V. Tomchuk, V. A. Matveev, N. K. Pleshanov, E. Yu. Kataev, L. V. Yashina, and D. M. Itkis, Appl. Surf. Sci. 424, 378 (2017).CrossRefGoogle Scholar
  11. 11.
    Y. Lauw, T. Rodopoulos, M. Gross, A. Nelson, R. Gardner, and M. D. Horne, Rev. Sci. Instrum. 81, 074101 (2010).CrossRefGoogle Scholar
  12. 12.
    J. E. Owejan, J. P. Owejan, S. C. De Caluwe, and J. A. Dura, Chem. Mater. 24, 2133 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. I. Petrenko
    • 1
    • 2
    Email author
  • Ye. N. Kosiachkin
    • 1
    • 2
  • L. A. Bulavin
    • 2
  • M. V. Avdeev
    • 1
    • 3
  1. 1.Frank Laboratory of Neutron PhysicsJoint Institute for Nuclear ResearchDubna, Moscow oblastRussia
  2. 2.Taras Shevchenko Kyiv National UniversityKyivUkraine
  3. 3.State University “Dubna”Dubna, Moscow oblastRussia

Personalised recommendations