Atmospheric and Oceanic Optics

, Volume 32, Issue 6, pp 619–621 | Cite as

Rotational Dependence of Line Half-width for 0 0 0 11–0 0 0 01 Fundamental Band of CO2 Confined in Aerogel Nanopores

  • A. A. Solodov
  • T. M. PetrovaEmail author
  • Yu. N. Ponomarev
  • A. M. Solodov
  • A. S. Shalygin


The absorption spectrum of carbon dioxide confined in aerogel has been measured in the 2250–2400 cm–1 region for the first time with the use of a Bruker IFS 125HR FTIR spectrometer. The dependence of CO2 half-widths on rotational quantum numbers was studied and compared with literature data.


CO2 aerogel FTIR spectroscopy 



This work was financially supported by the Russian Science Foundation (grant no. 18-72-00145).


The authors declare that they have no conflicts of interest.


  1. 1.
    Yu. N. Ponomarev, T. M. Petrova, A. M. Solodov, and A. A. Solodov, “IR spectroscopy of water vapor confined in nanoporous silica aerogel,” Opt. Express 18 (25), 26 062–26 067 (2010).CrossRefGoogle Scholar
  2. 2.
    T. M. Petrova, Yu. N. Ponomarev, A. A. Solodov, A. M. Solodov, and A. F. Danilyuk, “Spectroscopic nanoporometry of aerogel,” JETP Lett. 101, 65–67 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    A. A. Solodov, T. M. Petrova, Yu. N. Ponomarev, and A. M. Solodov, “Influence of nanoconfinement on the rotational dependence of line half-widths for 2-0 band of carbon oxide,” Chem. Phys. Lett. 637, 18–21 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Solodov, T. M. Petrova, Yu. N. Ponomarev, A. M. Solodov, and E. A. Glazkova, “Rotational dependences of line half-widths for CO and CO2 confined in SiO2/Al2O3 xerogel,” Mol. Phys. 115 (14), 1708–1712 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    A. A. Solodov, T. M. Petrova, Yu. N. Ponomarev, A. M. Solodov, and A. F. Danilyuk, “FTIR spectroscopy of 2-0 band of carbon monoxide confined in silica aerogels with different pore sizes,” Mol. Phys. 117 (1), 67–70 (2019).ADSCrossRefGoogle Scholar
  6. 6.
    T. M. Petrova, Yu. N. Ponomarev, A. A. Solodov, A. M. Solodov, and A. F. Danilyuk, “Line broadening of carbon dioxide confined in nanoporous aerogel,” Proc. SPIE—Int. Soc. Opt. Eng. 10035, 100350 (2016).Google Scholar
  7. 7.
    J.-M. Hartmann, V. Sironneau, C. Boulet, T. Svensson, J. T. Hodges, and C. T. Xu, “Infrared absorption by molecular gases as a probe of nanoporous silica xerogel and molecule-surface collisions: Low-pressure results,” Phys. Rev. A 87, 042506 (2013).CrossRefGoogle Scholar
  8. 8.
    J.-M. Hartmann, C. Boulet, AuweraJ. Vander, H. El. Hamzaoui, B. Capoen, and M. Bouazaoui, “Line broadening of confined CO gas: From molecule-wall to molecule-molecule collisions with pressure,” J. Chem. Phys. 140, 064302 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    J.-M. Hartmann, V. Sironneau, C. Boulet, T. Svensson, J. T. Hodges, and C. T. Xu, “Collisional broadening and spectral shapes of absorption lines of free and nanopore-confined O2 gas,” Phys. Rev. A 87, 032510 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    J.-M. Hartmann, Auwera J. Vander, C. Boulet, M. Birot, M.-A. Dourges, T. Toupance, H. El. Hamzaoui, P. Ausset, Y. Carre, L. Kocon, B. Capoen, and M. Bouazaoui, “Infrared absorption by molecular gases to probe porous materials and comparisons with other techniques,” Micropor. Mesopor. Mater. 237, 31–37 (2017).CrossRefGoogle Scholar
  11. 11.
    T. Svensson, E. Adolfsson, M. Burresi, R. Savo, Xu. Can, D. S. Wiersma, and S. Svanberg, “Pore size assessment based on wall collision broadening of spectral lines of confined gas: Experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes,” Appl. Phys. B 110 (2), 147–154 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    T. Svensson, M. Lewander, and S. Svanberg, “Laser absorption spectroscopy of water vapor confined in nanoporous alumina: Wall collision line broadening and gas diffusion dynamics,” Opt. Express 18 (16), 16460–16473 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Csaszar, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Auwera Vander, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HIT-RAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    D. R. Rolison and B. Dunn, “Electrically conductive oxide aerogels: new materials in electrochemistry,” J. Mater. Chem. 11, 963–980 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Solodov
    • 1
    • 2
  • T. M. Petrova
    • 1
    Email author
  • Yu. N. Ponomarev
    • 1
    • 2
  • A. M. Solodov
    • 1
  • A. S. Shalygin
    • 3
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia
  3. 3.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations