Atmospheric and Oceanic Optics

, Volume 32, Issue 6, pp 650–654 | Cite as

Estimation of SO2 Emission into the Air of the Norilsk Industrial Region

  • V. F. RaputaEmail author
  • D. V. SimonenkovEmail author
  • B. D. BelanEmail author
  • T. V. Yaroslavtseva


The data from aircraft sounding of the emission plume in the atmosphere of the Norilsk industrial region in summer are numerically analyzed. A two-parameter model was developed for numerical retrieval of impurity concentrations in directions transverse to the plume. The lower limits of sulfur dioxide emission corresponding to different emission times are estimated on the basis of the model. Considerable variability of the estimates is found due to nonstationarity of sulfur dioxide emission into the atmosphere. The average emission of SO2 into the atmosphere is estimated as 1.86 million tons/year, which is close to the official statistics.


atmosphere sulfur dioxide smoke plume emission of impurity estimation model 



The work was performed within the State Assignment (project nos. 0315-2019-0004 and 0368-2018-0011) under partial financial support of the Presidium of the Russian Academy of Sciences (Program no. 51 “Climate Change: Causes, Risks, Consequences, and Adaptation and Control Problems” (project no. 0315-2018-0016) and the Russian Foundation for Basic Research and Novosibirsk Region Administration (project no. 19-47-540 008).


The authors declare that they have no conflicts of interest.


  1. 1. Cited January 12, 2019.Google Scholar
  2. 2.
    A. E. Aloyan, A. N. Ermakov, V. O. Arutyunyan, and V. A. Zagainov, “Dynamics of trace gases and aerosols in the atmosphere with consideration for heterogeneous processes,” Izv. Atmos. Ocean. Phys. 46 (5), 608–622 (2010).CrossRefGoogle Scholar
  3. 3.
    V. A. Shlychkov, V. M. Mal’bakhov, and A. A. Lezhenin, “Numerical modeling of atmospheric circulation and pollution transport in the Norilsk valley,” Atmos. Ocean. Opt. 18 (5-6), 440–445 (2005).Google Scholar
  4. 4.
    V. A. Obolkin, V. L. Potemkin, V. L. Makukhin, T. V. Khodzher, and E. V. Chipanina, “Long-range transport of plumes of atmospheric emissions from regional coal power plants to the South Baikal water basin,” Atmos. Ocean. Opt. 30 (4), 360–365 (2017).CrossRefGoogle Scholar
  5. 5.
    A. E. Aloyan, V. O. Arutyunyan, and A. N. Ermakov, “Mathematical modeling of convective cloudiness in polar regions,” Opt. Atmos. Okeana 30 (3), 222–226 (2017).CrossRefGoogle Scholar
  6. 6.
    S. E. Pitovranov, V. V. Fedoro, and L. L. Edwards, “Optimal sampler siting for atmospheric tracer experiments taking into account uncertainties in the wind field,” Atmos. Environ. 27A (7), 1053–1059 (1993).ADSCrossRefGoogle Scholar
  7. 7.
    M. Yu. Arshinov, B. D. Belan, G. A. Ivlev, O. A. Krasnov, T. M. Rasskazchikova, D. V. Simonenkov, G. N. Tolmachev, and A. V. Fofonov, “Complex assessment of the conditions of the air basin over Norilsk industrial region. Part 3. Dispersal of admixtures,” Atm-os. Ocean. Opt. 19 (9), 717–723 (2006).Google Scholar
  8. 8.
    A. A. Onuchin, T. A. Burenina, O. N. Zubareva, O. V. Trefilova, and I. V. Danilova, “Snow cover pollution in the zone of action of Norilsk industrial region enterprises,” Sib. Ekol. Zhurn., No. 6, 1025–1037 (2014).Google Scholar
  9. 9.
    O. Yu. Antokhina, P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, Ph. Nédélec, J.-D. Paris, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “Vertical distributions of gaseous and aerosol admixtures in air over the Russian Arctic,” A-tmos. Ocean. Opt. 31 (3), 300–310 (2018).CrossRefGoogle Scholar
  10. 10.
    V. V. Litau, A. V. Talovskaya, E. G. Yazikov, A. D. Lonchakova, and M. I. Tret’yakov, “Dust pollution assessment on the territory of Omsk city using snow survey,” Opt. Atmos. Okeana 28 (3), 256–259 (2015).Google Scholar
  11. 11.
    P. N. Antokhin, A. V. Gochakov, A. B. Kolker, and A. V. Penenko, “Comparison of WRF-CHEM chemical transport model calculations with aircraft measurements in Norilsk,” Atmos. Ocean. Opt. 31 (4), 372–380 (2018).CrossRefGoogle Scholar
  12. 12.
    V. F. Raputa, S. E. Ol’kin, and I. K. Reznikova, “Numerical analysis of observation data of regional pollution of an area source,” Opt. Atmos. Okeana 21 (6), 486–489 (2008).Google Scholar
  13. 13.
    N. L. Byzova, E. K. Garger, and V. N. Ivanov, Experimental Study of Atmospheric Diffusion and Calculation of Admixture Scattering (Gidrometeoizdat, Leningrad, 1991) [in Russian].Google Scholar
  14. 14.
    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. A. Ivlev, V. A. Pirogov, T. M. Rasskazchikova, D. V. Simonenkov, G. N. Tolmachev, and A. V. Fofonov, “Experimental investigation of the pollution transformation in industrial plumes,” Atmos. Ocean. Opt. 18 (4), 302–310 (2005).Google Scholar
  15. 15. okruzhayushchey_sredy_rossiyskoy_federatsii/1957/. Cited January 12, 2019.Google Scholar
  16. 16.
    A. G. Ryaboshapko, “Model of chemical transformations and removal of sulfur and nitrogen compounds from the atmosphere during long-range transport,” Tr. IPG 71, 25–32 (1988).Google Scholar
  17. 17.
    Yu. A. Izrael’, I. M. Nazarov, and A. Ya. Pressman, Acid Rains (Gidrometeoizdat, Leningrad, 1989) [in Russian].Google Scholar
  18. 18.
    V. A. Isidorov, Organic Chemistry of the Atmosphere (Khimiya, Leningrad, 1985) [in Russian].Google Scholar
  19. 19.
    D. Paffrath and W. Peters, “Aircraft measurements of various pollution components and meteorological parameters,” in VI Congr. Mond. Qualite Air (Paris, 1983), 133–136.Google Scholar
  20. 20.
    D. Paffrath, “Airborne chemistry measurements,” in Remote Sens. Earth’s Environ.: Some Pap. Present Alpbach, Simp. School (Noordwijk, 1990), p. 43–49.Google Scholar
  21. 21.
    A. B. Uspenskii and V. V. Fedorov, Computational Aspects in the Analysis and Planning of Regression Experiments (MSU, Moscow, 1975) [in Russian].Google Scholar
  22. 22.
    V. F. Raputa, D. V. Simonenkov, B. D. Belan, and T. V. Yaroslavtseva, “Numerical study of gas and aerosol impurity transfer and transformation processes in the plume of the Norilsk industrial region,” Atmos. Ocean. Opt. 31 (5), 466–470 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian academy of SciencesTomskRussia
  3. 3.Novosibirsk Institute of HygieneNovosibirskRussia

Personalised recommendations