Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 6, pp 643–649 | Cite as

Smog and Smoke Haze over the North China Plain in June 2007

  • G. I. GorchakovEmail author
  • A. V. Karpov
  • I. A. Gorchakova
  • R. A. Gushchin
  • O. I. Datsenko
ATMOSPHERIC RADIATION, OPTICAL WEATHER, AND CLIMATE
  • 9 Downloads

Abstract

According to satellite monitoring data (MODIS/Terra), the spatial distribution of the aerosol optical depth (AOD) at a wavelength of 550 nm for the summer smog of 2007 over the North China Plain (NCP) and adjacent areas has been obtained. Areas over which the AOD is higher due to regional anthropogenic contamination sources near Beijing and Shanghai, as well as the smoke haze forming due to agricultural burning (the southwest part of the NCP), have been revealed. The similarity of optical and microphysical characteristics of aerosol in the smoke haze over the NCP and in the Russian territory has been found: (i) the decisive contribution to the optical characteristics of smoke aerosol is made by the fine mode and (ii) the attenuation spectra in the wavelength region 340–1020 nm are approximated (in logarithmic coordinates) by parabolas or fourth degree polynomials. The monitoring data at the AERONET Beijing site show that the single scattering albedo in the summer smog over the NCP is on average less (0.91) than in the smoke haze in the Russian territory (0.95–0.96). The radiative regimes of the atmosphere are significantly different: in the smog, the aerosol radiative forcing efficiency is lower approximately by 30% at the top of the atmosphere and higher by 30% at the bottom of the atmosphere than in the smoke haze.

Keywords:

smog smoke haze aerosol fine mode coarse mode aerosol optical depth extinction spectrum extinction spectrum approximation single scattering albedo aerosol radiative forcing radiative forcing efficiency MODIS AERONET 

Notes

ACKNOWLEDGMENTS

We are grateful to G.S. Golitsyn for the attention to this work.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    G. I. Gorchakov, S. A. Sitnov, M. A. Sviridenkov, E. G. Semoutnikova, A. S. Emilenko, A. A. Isakov, V. M. Kopeikin, A. V. Karpov, I. A. Gorchakova, K. S. Verichev, G. A. Kurbatov, and T. Ya. Ponomareva, “Satellite and ground-based monitoring of smoke in the atmosphere during the summer wildfires in European Russia in 2010 and Siberia in 2012,” Int. J. Remote Sens. 35 (15), 5698–5721 (2014).Google Scholar
  2. 2.
    G. S. Golitsyn, G. I. Gorchakov, E. I. Grechko, E. G. Semoutnikova, V. S. Rakitin, E. V. Fokeeva, A. V. Karpov, G. A. Kurbatov, E. S. Baikova, and T. P. Safrygina, “Extreme carbon monoxide pollution of the atmospheric boundary layer in Moscow region in the summer of 2010,” Dokl. Earth Sci. 441 (4), 532–538 (2011).CrossRefGoogle Scholar
  3. 3.
    V. G. Bondur and A. S. Ginzburg, “Emission of carbon-bearing gases and aerosols from natural fires on the territory of Russia based on space monitoring,” Dokl. Earth Sci. 466 (4), 473–477 (2016).Google Scholar
  4. 4.
    V. G. Bondur, “Space monitoring of trace gas and aerosol emissions during wild fires,” Issled. Zemli Kosmosa. No. 6, 21–25 (2015).Google Scholar
  5. 5.
    N. F. Elanskii, I. I. Mokhov, I. B. Belikov, E. V. Berezina, A. S. Elokhov, V. A. Ivanov, N. V. Pankratova, O. V. Postylyakov, A. N. Safronov, A. I. Skorokhod, and R. A. Shumskii, “Gaseous admixtures in the atmosphere over Moscow during the 2010 summer,” Izv. Atmos. Ocean. Phys. 47 (6), 729–738 (2011).CrossRefGoogle Scholar
  6. 6.
    I. I. Mokhov and I. A. Gorchakova, “Radiation and temperature effects of summer fires in 2002 in the Moscow region,” Dokl. Earth Sci. 400 (4), 528–531 (2005).Google Scholar
  7. 7.
    M. Yu. Arshinov and B. D. Belan, “Study of the aerosol size distribution during spring haze and biomass burning events,” Opt. Atmos. Okeana 24 (6), 468–477 (2011).Google Scholar
  8. 8.
    T. K. Sklyadneva, G. A. Ivlev, B. D. Belan, M. Yu. Arshinov, and D. V. Simonenkov, “The radiation regime of Tomsk in conditions of a smoky haze,” Opt. Atmos. Okeana 28 (3), 215–222 (2015).Google Scholar
  9. 9.
    M. V. Panchenko, T. B. Zhuravleva, V. S. Kozlov, I. M. Nasrtdinov, V. V. Pol’kin, S. A. Terpugova, and D. G. Chernov, “Estimation of aerosol radiation effects under background and smoke-haze atmospheric conditions over Siberia from empirical data,” Rus. Meteorol. Hydrol. No. 2, 45–54 (2016).Google Scholar
  10. 10.
    A. Van Donkelaar, R. V. Martin, R. C. Levy, M. A. Silva, M. Krzyzanowski, N. E. Chubarova, E. G. Semoutnikova, and A. J. Cohen, “Satellite-based estimates of ground-level fine particle matter during extreme events: A case study of the Moscow fires in 2010,” Atmos. Environ. 45, 6225–6232 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    I. A. Gorchakova and I. I. Mokhov, “The radiative and thermal effects of smoke aerosol over the region of Moscow during the summer fires of 2010,” Izv. Atmos. Ocean. Phys. 48 (5), 496–503 (2012).CrossRefGoogle Scholar
  12. 12.
    I. A. Gorchakova, I. I. Mokhov, P. P. Anikin, and A. S. Emilenko, “Radiative and thermal impacts of the smoke aerosol longwave absorption during fires in Moscow Region in summer 2010,” Izv. RAN. Fiz. Atmos. Okeana 54 (2), 175–183 (2018).Google Scholar
  13. 13.
    N. Chubarova, Y. Nezval’, M. Sviridenkov, A. Smirnov, and I. Slutsker, “Smoke aerosol and its radiative effects during extreme fire event over Central Russia in summer 2010,” Atmos. Meas. Tech. Discuss. 5, 6351–6386 (2011).CrossRefGoogle Scholar
  14. 14.
    T. B. Zhuravleva, D. M. Kabanov, I. M. Nasrtdinov, T. V. Russkova, S. M. Sakerin, A. Smirnov, and B. N. Holben, “Radiative characteristics of aerosol during extreme fire event over Siberia in summer 2012,” Atmos. Meas. Tech 9, 179–198 (2017).CrossRefGoogle Scholar
  15. 15.
    V. S. Kozlov, E. P. Yausheva, S. A. Terpugova, M. V. Panchenko, D. G. Chernov, and V. P. Shmargunov, “Optical-microphysical properties of smoke haze from Siberian forest fires in summer 2012,” Int. J. Remote Sens. 35 (15), 5722–5741 (2014).Google Scholar
  16. 16.
    V. S. Kozlov, M. V. Panchenko, V. V. Pol’kin, Yu. A. Pkhalagov, V. N. Uzhegov, N. N. Shchelkanov, and E. P. Yausheva, “Some peculiarities in the dynamics of optical and microphysical characteristics of aerosol in smoke haze,” Atmos. Ocean. Opt. 12 (5), 390–394 (1999).Google Scholar
  17. 17.
    O. B. Popovicheva, V. S. Kozlov, R. F. Rakhimov, V. P. Shmargunov, E. D. Kireva, N. M. Persiantseva, M. A. Timofeev, G. Engling, K. Eleftheriadis, E. Diapouli, M. V. Panchenko, R. Zimmermann, and J. Schnelle-Kreis, “Optical-microphysical and physical-chemical characteristics of Siberian biomass burning: Experiments in aerosol chamber,” Atmos. Ocean. Opt. 29 (6), 492–500 (2016).CrossRefGoogle Scholar
  18. 18.
    S. A. Sitnov, “Aerosol optical thickness and the total carbon monoxide content over the European Russia territory in the 2010 summer period of mass fires: Interrelation between the variation in pollutants and meteorological parameters,” Izv. Atmos. Ocean. Phys. 47 (6), 714–728 (2011).CrossRefGoogle Scholar
  19. 19.
    A. A. Vinogradova, N. S. Smirnov, and V. N. Korotkov, “Anomalous wildfires in 2010 and 2012 on the territory of Russia and supply of black carbon to the Arctic,” Atm-os. Oceanic Opt. 29 (6), 545–550 (2016).CrossRefGoogle Scholar
  20. 20.
    A. A. Vinogradova, T. B. Titkova, and Yu. A. Ivanova, “Episodes with anomalously high black carbon concentration in surface air in the region of Tiksi station, Yakutiya,” Atmos. Ocean. Opt. 32 (1), 94–102 (2019).CrossRefGoogle Scholar
  21. 21.
    G. Gorchakov, E. Semoutnikova, A. Karpov, and E. Lezina, “Air pollution in Moscow megacity,” in Advanced Topics in Environmental Health and Air Pollution Case Studies (Intech, Rijeka, 2011).Google Scholar
  22. 22.
    G. I. Gorchakov, P. P. Anikin, A. A. Volokh, A. S. Emilenko, A. A. Isakov, V. M. Kopeikin, T. Ya. Ponomareva, E. G. Semoutnikova, M. A. Sviridenkov, and K. A. Shukurov, “Study of the composition of the atmospheric smoke screen over the Moscow region,” Dokl. Dokl. Earth Sci. 390 (4), 562–565 (2003).Google Scholar
  23. 23.
    G. I. Gorchakov, P. P. Anikin, A. A. Volokh, A. S. Emilenko, A. A. Isakov, V. M. Kopeikin, T. Ya. Ponomareva, E. G. Semoutnikova, M. A. Sviridenkov, and K. A. Shukurov, “Studies of the smoky atmosphere composition over Moscow during peatbog fires in the summer-fall season of 2002,” Izv. Atmos. Ocean. Phys. 40 (3), 323–336 (2004).Google Scholar
  24. 24.
    G. I. Gorchakov, M. A. Sviridenkov, E. G. Semoutnikova, N. E. Chubarova, B. N. Kholben, A. V. Smirnov, A. S. Emilenko, A. A. Isakov, V. M. Kopeikin, A. V. Karpov, E. A. Lezina, and O. S. Zadorozhnaya, “Optical and microphysical parameters of the aerosol in the smoky atmosphere of the Moscow region in 2010,” Dokl. Earth Sci. 437 (2), 513–517 (2011).ADSCrossRefGoogle Scholar
  25. 25.
    G. I. Gorchakov, S. A. Sitnov, A. V. Karpov, V. M. Kopeikin, I. A. Gorchakova, A. A. Isakov, R. A. Guschin, O. I. Datsenko, and T. Ya. Ponomareva, “Siberian smoke haze over Europe in July 2016,” Proc. SPIE—Int. Soc. Opt. Eng. 10833 (2018).Google Scholar
  26. 26.
    G. I. Gorchakov, A. V. Vasil’ev, K. S. Verichev, E. G. Semoutnikova, and A. V. Karpov, “Finely dispersed brown carbon in a smoggy atmosphere,” Dokl. Earth Sci. 471 (1), 1158–1163 (2016).ADSCrossRefGoogle Scholar
  27. 27.
    G. I. Gorchakov, A. V. Karpov, N. V. Pankratova, E. G. Semoutnikova, A. V. Vasil’ev, and I. A. Gorchakova, “Braun and black carbon in smoky atmosphere during fires in boreal forests,” Issled. Zemli Kosmosa. No. 3, 11–21 (2017).Google Scholar
  28. 28.
    Y. Feng, V. Ramanthan, and V. R. Katamarthi, “Brown carbon: A significant atmospheric absorber of solar radiation?,” Atmos. Chem. Phys. 13, 8607–8621 (2013).ADSCrossRefGoogle Scholar
  29. 29.
    S. A. Sitnov, I. I. Mokhov, and G. I. Gorchakov, “The link between smoke blanketing of European Russia in summer 2016, Siberian wildfires and anomalies of large-scale atmospheric circulation,” Dokl. Earth Sci. 472 (2), 1990–195 (2017).CrossRefGoogle Scholar
  30. 30.
    S. A. Sitnov, I. I. Mokhov, G. I. Gorchakov, and A. V. Dzhola, “Smoke haze over the European part of Russia in the summer of 2016: A link to wildfires in Siberia and atmospheric circulation anomalies,” Rus. Meteorol. Hydrol. 42 (8), 518–528 (2017).CrossRefGoogle Scholar
  31. 31.
    E. G. Semoutnikova, G. I. Gorchakov, S. A. Sitnov, V. M. Kopeikin, A. V. Karpov, I. A. Gorchakova, T. Ya. Ponomareva, A. A. Isakov, R. A. Gushchin, O. I. Datsenko, G. A. Kurbatov, and G. A. Kuznetsov, “Siberian smoke haze over European Territory of Russia in July 2016: Atmospheric pollution and radiative effects,” Atmos. Ocean. Opt. 31 (2), 171–180 (2018).CrossRefGoogle Scholar
  32. 32.
    G. I. Gorchakov, S. A. Sitnov, E. G. Semoutnikova, V. M. Kopeikin, A. V. Karpov, I. A. Gorchakova, N. V. Pankratova, T. Ya. Ponomareva, G. A. Kuznetsov, O. V. Los-kutova, E. A. Kozlovtseva, and K. V. Rodina, “Large-scale smoke haze over the European Russia and Belarus in July 2016,” Issled. Zemli Kosmosa, No. 1, 27–42 (2018).Google Scholar
  33. 33.
    G. I. Gorchakov, G. S. Golitsyn, S. A. Sitnov, A. V. Karpov, I. A. Gorchakova, R. A. Gushchin, and O. I. Datsenko, “Large-scale hazes over Eurasia in July 2016,” Dokl. Akad. Nauk 482 (2), 211–214 (2018).Google Scholar
  34. 34.
    G. I. Gorchakov, A. V. Karpov, A. V. Vasiliev, and I. A. Gorchakova, “Brown and black carbons in megacity smogs,” Atmos. Ocean. Opt. 30 (3), 248–254 (2017).CrossRefGoogle Scholar
  35. 35.
    R. C. Levy, L. A. Remer, S. Mattoo, E. F. Vermote, and Y. J. Kaufman, “Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance,” J. Geophys. Res. 112, D13211 (2007).ADSCrossRefGoogle Scholar
  36. 36.
    B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, N. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).ADSCrossRefGoogle Scholar
  37. 37.
    Y. Xue, H. Xu, J. Guang, L. Mei, J. Guo, C. Li, R. Mikusauskas, and X. He, “Observation of an agricultural biomass burning in central and east china using merged aerosol optical depth data from multiple satellite missions,” Int. J. Remote Sens. 35 (16), 5971–5983 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. I. Gorchakov
    • 1
    Email author
  • A. V. Karpov
    • 1
  • I. A. Gorchakova
    • 1
  • R. A. Gushchin
    • 1
    • 2
  • O. I. Datsenko
    • 1
    • 2
  1. 1.Obukhov Institute of Atmospheric Physics, Russian Academy of SciencesMoscowRussia
  2. 2.MIREA Russian Technological UniversityMoscowRussia

Personalised recommendations